135 research outputs found

    Compositional evolution: interdisciplinary investigations in evolvability, modularity, and symbiosis

    No full text
    Conventionally, evolution by natural selection is almost inseparable from the notion of accumulating successive slight variations. Although it has been suggested that symbiotic mechanisms that combine together existing entities provide an alternative to gradual, or 'accretive', evolutionary change, there has been disagreement about what impact these mechanisms have on our understanding of evolutionary processes. Meanwhile, in artificial evolution methods used in computer science, it has been suggested that the composition of genetic material under sexual recombination may provide adaptation that is not available under mutational variation, but there has been considerable difficulty in demonstrating this formally. Thus far, it has been unclear what types of systems, if any, can be evolved by such 'compositional' mechanisms that cannot be evolved by accretive mechanisms. This dissertation takes an interdisciplinary approach to this question by building abstract computational simulations of accretive and compositional mechanisms. We identify a class of complex systems possessing 'modular interdependency', incorporating highly epistatic but modular substructure. This class typifies characteristics that are pathological for accretive evolution - the corresponding fitness landscape is highly rugged, has many local optima creating broad fitness saddles, and includes 'irreducibly complex' adaptations that cannot be reached by a succession of gradually changing proto-systems. Nonetheless, we provide simulations to show that this class of system is easily evolvable under sexual recombination or a mechanism of 'symbiotic encapsulation'. Our simulations and analytic results help us to understand the fundamental differences in the adaptive capacities of these mechanisms, and the conditions under which they provide an adaptive advantage. These models exemplify how certain kinds of complex systems, considered unevolvable under normal accretive change, are, in principle, easily evolvable under compositional evolution

    Artificial symbiogenesis and differing reproduction rates

    Get PDF
    Symbiosis is the phenomenon in which organisms of different species live together in close association. Symbiogenesis is the name given to the process by which symbiotic partners combine and unify. This letter reconsiders previous work using the NKCS model of coevolution to explore symbiogenesis. In particular, the role of different replication rates between the coevolving partners is considered. This is shown to provide a broader scope for the emergence of endosymbioses and subsequent horizontal gene transfers. Š 2009 Massachusetts Institute of Technology

    Separating what is evaluated from what is selected in artificial evolution

    Get PDF
    In artificial evolution, selection and evaluation are separate and distinct steps. This distinction is rather different in natural evolution, where fitness (corresponding to evaluation) is a direct consequence of selection rather than a precursor to it. This thesis presents a new way of thinking about artificial evolution that separates evaluation and selection and consequently opens up the space of potential evolutionary algorithms beyond the limitations imposed by ignoring this distinction. In Part I of the thesis we explore how varying the level of evaluation and selection impacts evolution. Using novel genetic algorithms (GAs) we show how group level evaluation allows evolution to find solutions to problems that require niching or a division of labour amongst component parts, something that cannot be accomplished using a standard GA. One of the inspirations for testing GAs with group-level evaluation was recent research into bacterial evolution which shows in bacterial colonies, distinguishing between the individual and group is very difficult because of the symbiotic relationship between different bacteria. We find that depending on the task it sometimes makes sense to select the individual while in other cases simply selecting groups is the best choice. Finally, we present a method for evolving the group size in these types of GAs that has the benefit of avoiding the need to know the optimal division of labour ahead of time. In Part II we move away from studying the relationship between evaluation and selection to show how our novel view of evolution can be used to develop GAs that implement horizontal gene transfer which was again inspired by looking at bacterial evolution. By testing these GAs on a variety of different tasks we show how this promiscuous gene swapping is often beneficial to evolution because it can reduce the probability of the population getting stuck on a sub-optimal solution. The thesis demonstrates the benefits of of looking at artificial evolution in terms of both evaluation and selection when it comes to algorithm development, and thus provides the GA community with a new context in which they can choose different algorithms appropriate to different tasks

    The stability of traits conception of the hologenome: An evolutionary account of holobiont individuality

    Get PDF
    Bourrat and Griffiths (HPLS 40(2): 33, 2018) have recently argued that most of the evidence presented by holobiont defenders to support the thesis that holobionts are evolutionary individuals is not to the point and is not even adequate to discriminate multispecies evolutionary individuals from other multispecies assemblages that would not be considered evolutionary individuals by most holobiont defenders. They further argue that an adequate criterion to distinguish the two categories rests on the existence of fitness alignment, presenting the notion of fitness boundedness as a criterion that allows divorcing true multispecies evolutionary individuals from other multispecies assemblages and provides an adequate criterion to single out genuine evolutionary multispecies assemblages. A consequence of their criterion is that holobionts, as conventionally defined by hologenome defenders, are not evolutionary individuals except in very rare cases, and for very specific host-symbiont associations. This paper is a critical response to Bourrat and Griffiths’ arguments and as such it constitutes a refinement and a defence of the arguments presented by holobiont defenders. Drawing upon the case of the hologenomic basis of the evolution of sanguivory in vampire bats (Nat. Ecol. Evol. 2: 659-668, 2018), I argue that Bourrat and Griffiths overlook some aspects of the biological nature of the microbiome that justifies the thesis that holobionts are evolutionarily different to other multispecies assemblages. I argue that the hologenome theory of evolution should not define the hologenome as a collection of genomes, but as the sum of the host genome plus some traits of the microbiome which together constitute an evolutionary individual, a conception I refer to as the stability of traits conception of the hologenome. Based on that conception I argue that the evidence presented by holobiont defenders, if adequately refined under the “stability of traits” framework I advocate here, is to the point, and supports the thesis that holobionts are evolutionary individuals. In this sense, the paper offers an account of the holobiont that aims to foster a dialogue between hologenome advocates and hologenome critics

    The hologenome concept of evolution: a philosophical and biological study

    Get PDF
    The hologenome concept of evolution is a hypothesis about the evolution of animals and plants. It asserts that the evolution of animals and plants was partially triggered by their interactions with their symbiotic microbiomes. In that vein, the hologenome concept posits that the holobiont (animal host + symbionts of the microbiome) is a unit of selection. The hologenome concept has been severely criticized on the basis that selection on holobionts would only be possible if there were a tight transgenerational host-genotype-to-symbiont-genotype connection. As our current evidence suggests that this is not the case for most of the symbiont species that compose the microbiome of animals and plants, the opportunity for holobiont selection is very low in relation to the opportunity for selection on each of the species that compose the host microbiome. Therefore, holobiont selection will always be disrupted ‘from below’, by selection on each of the species that compose the microbiome. This thesis constitutes a conceptual effort to defend philosophically the hologenome concept. I argue that the criticism according to which holobiont selection requires tight transgenerational host-genotype-to-symbiont-genotype connection is grounded on a metaphysical view of the world according to which the biological hierarchy needs to be nested, such that each new level of selection includes every entity from below. Applied to hologenomes, it entails that the hologenome is a collection of genomes, and selection of hologenomes is assumed to entail cospeciation of the host with the species that constitute its microbiome. Against that interpretation, I propose the ‘stability of traits’ account, according to which hologenome evolution is the result of the action of natural selection in a non-nested hierarchical world. In that vein, hologenome evolution does not entail cospeciation, and thus it does not require tight transgenerational host-genotype-to-symbiont-genotype connection. By embracing a multilevel selection perspective, I argue that hologenome evolution results from the simultaneous action of natural selection on each of the lineages that compose the microbiome, and on the assemblage composed by the host genome plus the functional traits of its microbiome. Hologenome selection occurs when the evolution of the traits of the microbiome result from their effects on the fitness of the host, and it can take the form of multilevel selection 1, or multilevel selection 2. In both cases, hologenome selection entails the evolution of microbiome traits, as well as evolution of the host genome, rather than cospeciation of lineages

    Conciliation biology: the eco-evolutionary management of permanently invaded biotic systems

    Get PDF
    Biotic invaders and similar anthropogenic novelties such as domesticates, transgenics, and cancers can alter ecology and evolution in environmental, agricultural, natural resource, public health, and medical systems. The resulting biological changes may either hinder or serve management objectives. For example, biological control and eradication programs are often defeated by unanticipated resistance evolution and by irreversibility of invader impacts. Moreover, eradication may be ill-advised when nonnatives introduce beneficial functions. Thus, contexts that appear to call for eradication may instead demand managed coexistence of natives with nonnatives, and yet applied biologists have not generally considered the need to manage the eco-evolutionary dynamics that commonly result from interactions of natives with nonnatives. Here, I advocate a conciliatory approach to managing systems where novel organisms cannot or should not be eradicated. Conciliatory strategies incorporate benefits of nonnatives to address many practical needs including slowing rates of resistance evolution, promoting evolution of indigenous biological control, cultivating replacement services and novel functions, and managing native–nonnative coevolution. Evolutionary links across disciplines foster cohesion essential for managing the broad impacts of novel biotic systems. Rather than signaling defeat, conciliation biology thus utilizes the predictive power of evolutionary theory to offer diverse and flexible pathways to more sustainable outcomes

    Transformations in the Scale of Behaviour and the Global Optimisation of Constraints in Adaptive Networks

    No full text
    The natural energy minimisation behaviour of a dynamical system can be interpreted as a simple optimisation process, finding a locally optimal resolution of problem constraints. In human problem solving, high-dimensional problems are often made much easier by inferring a low-dimensional model of the system in which search is more effective. But this is an approach that seems to require top-down domain knowledge; not one amenable to the spontaneous energy minimisation behaviour of a natural dynamical system. However, in this paper we investigate the ability of distributed dynamical systems to improve their constraint resolution ability over time by self-organisation. We use a ‘self-modelling’ Hopfield network with a novel type of associative connection to illustrate how slowly changing relationships between system components can result in a transformation into a new system which is a low-dimensional caricature of the original system. The energy minimisation behaviour of this new system is significantly more effective at globally resolving the original system constraints. This model uses only very simple, and fully-distributed positive feedback mechanisms that are relevant to other ‘active linking’ and adaptive networks. We discuss how this neural network model helps us to understand transformations and emergent collective behaviour in various non-neural adaptive networks such as social, genetic and ecological networks

    The stability of traits conception of the hologenome: An evolutionary account of holobiont individuality

    Get PDF
    Bourrat and Griffiths (HPLS 40(2): 33, 2018) have recently argued that most of the evidence presented by holobiont defenders to support the thesis that holobionts are evolutionary individuals is not to the point and is not even adequate to discriminate multispecies evolutionary individuals from other multispecies assemblages that would not be considered evolutionary individuals by most holobiont defenders. They further argue that an adequate criterion to distinguish the two categories rests on the existence of fitness alignment, presenting the notion of fitness boundedness as a criterion that allows divorcing true multispecies evolutionary individuals from other multispecies assemblages and provides an adequate criterion to single out genuine evolutionary multispecies assemblages. A consequence of their criterion is that holobionts, as conventionally defined by hologenome defenders, are not evolutionary individuals except in very rare cases, and for very specific host-symbiont associations. This paper is a critical response to Bourrat and Griffiths’ arguments and as such it constitutes a refinement and a defence of the arguments presented by holobiont defenders. Drawing upon the case of the hologenomic basis of the evolution of sanguivory in vampire bats (Nat. Ecol. Evol. 2: 659-668, 2018), I argue that Bourrat and Griffiths overlook some aspects of the biological nature of the microbiome that justifies the thesis that holobionts are evolutionarily different to other multispecies assemblages. I argue that the hologenome theory of evolution should not define the hologenome as a collection of genomes, but as the sum of the host genome plus some traits of the microbiome which together constitute an evolutionary individual, a conception I refer to as the stability of traits conception of the hologenome. Based on that conception I argue that the evidence presented by holobiont defenders, if adequately refined under the “stability of traits” framework I advocate here, is to the point, and supports the thesis that holobionts are evolutionary individuals. In this sense, the paper offers an account of the holobiont that aims to foster a dialogue between hologenome advocates and hologenome critics
    • …
    corecore