1,045 research outputs found

    Matrix-equation-based strategies for convection-diffusion equations

    Full text link
    We are interested in the numerical solution of nonsymmetric linear systems arising from the discretization of convection-diffusion partial differential equations with separable coefficients and dominant convection. Preconditioners based on the matrix equation formulation of the problem are proposed, which naturally approximate the original discretized problem. For certain types of convection coefficients, we show that the explicit solution of the matrix equation can effectively replace the linear system solution. Numerical experiments with data stemming from two and three dimensional problems are reported, illustrating the potential of the proposed methodology

    Solving rank structured Sylvester and Lyapunov equations

    Full text link
    We consider the problem of efficiently solving Sylvester and Lyapunov equations of medium and large scale, in case of rank-structured data, i.e., when the coefficient matrices and the right-hand side have low-rank off-diagonal blocks. This comprises problems with banded data, recently studied by Haber and Verhaegen in "Sparse solution of the Lyapunov equation for large-scale interconnected systems", Automatica, 2016, and by Palitta and Simoncini in "Numerical methods for large-scale Lyapunov equations with symmetric banded data", SISC, 2018, which often arise in the discretization of elliptic PDEs. We show that, under suitable assumptions, the quasiseparable structure is guaranteed to be numerically present in the solution, and explicit novel estimates of the numerical rank of the off-diagonal blocks are provided. Efficient solution schemes that rely on the technology of hierarchical matrices are described, and several numerical experiments confirm the applicability and efficiency of the approaches. We develop a MATLAB toolbox that allows easy replication of the experiments and a ready-to-use interface for the solvers. The performances of the different approaches are compared, and we show that the new methods described are efficient on several classes of relevant problems

    Rational Krylov for Stieltjes matrix functions: convergence and pole selection

    Full text link
    Evaluating the action of a matrix function on a vector, that is x=f(M)vx=f(\mathcal M)v, is an ubiquitous task in applications. When M\mathcal M is large, one usually relies on Krylov projection methods. In this paper, we provide effective choices for the poles of the rational Krylov method for approximating xx when f(z)f(z) is either Cauchy-Stieltjes or Laplace-Stieltjes (or, which is equivalent, completely monotonic) and M\mathcal M is a positive definite matrix. Relying on the same tools used to analyze the generic situation, we then focus on the case M=I⊗A−BT⊗I\mathcal M=I \otimes A - B^T \otimes I, and vv obtained vectorizing a low-rank matrix; this finds application, for instance, in solving fractional diffusion equation on two-dimensional tensor grids. We see how to leverage tensorized Krylov subspaces to exploit the Kronecker structure and we introduce an error analysis for the numerical approximation of xx. Pole selection strategies with explicit convergence bounds are given also in this case

    Numerical Solutions of Coupled Systems of Fractional Order Partial Differential Equations

    Get PDF
    We develop a numerical method by using operational matrices of fractional order integrations and differentiations to obtain approximate solutions to a class of coupled systems of fractional order partial differential equations (FPDEs). We use shifted Legendre polynomials in two variables. With the help of the aforesaid matrices, we convert the system under consideration to a system of easily solvable algebraic equation of Sylvester type. During this process, we need no discretization of the data. We also provide error analysis and some test problems to demonstrate the established technique
    • …
    corecore