205 research outputs found

    A Review on Security Attacks in Vehicular Ad hoc Network

    Get PDF
    Whenever a communication takes place between two or more vehicles there has been a need for protection. The attacker can gain access to the network by compromising either the vehicle or road side unit or the communication medium that transfers the messages between vehicles. Vehicular Ad hoc Network (VANET) have motivated the interest towards the passenger comfort and secure driving environment. However, the open-wide communication becomes a tedious challenge for VANET organization. Because of the wireless self-structured background, VANET are prone to many attackers. In this paper, we are focusing on security issues like DoS, Sybil, DDoS, jamming and flooding attacks as well as techniques like TESLA which causes harm to VANET and also security countermeasures like digital signature which are used to prevent the mentioned security issues that alleviate VANET

    A comprehensive survey of V2X cybersecurity mechanisms and future research paths

    Get PDF
    Recent advancements in vehicle-to-everything (V2X) communication have notably improved existing transport systems by enabling increased connectivity and driving autonomy levels. The remarkable benefits of V2X connectivity come inadvertently with challenges which involve security vulnerabilities and breaches. Addressing security concerns is essential for seamless and safe operation of mission-critical V2X use cases. This paper surveys current literature on V2X security and provides a systematic and comprehensive review of the most relevant security enhancements to date. An in-depth classification of V2X attacks is first performed according to key security and privacy requirements. Our methodology resumes with a taxonomy of security mechanisms based on their proactive/reactive defensive approach, which helps identify strengths and limitations of state-of-the-art countermeasures for V2X attacks. In addition, this paper delves into the potential of emerging security approaches leveraging artificial intelligence tools to meet security objectives. Promising data-driven solutions tailored to tackle security, privacy and trust issues are thoroughly discussed along with new threat vectors introduced inevitably by these enablers. The lessons learned from the detailed review of existing works are also compiled and highlighted. We conclude this survey with a structured synthesis of open challenges and future research directions to foster contributions in this prominent field.This work is supported by the H2020-INSPIRE-5Gplus project (under Grant agreement No. 871808), the ”Ministerio de Asuntos Económicos y Transformacion Digital” and the European Union-NextGenerationEU in the frameworks of the ”Plan de Recuperación, Transformación y Resiliencia” and of the ”Mecanismo de Recuperación y Resiliencia” under references TSI-063000-2021-39/40/41, and the CHIST-ERA-17-BDSI-003 FIREMAN project funded by the Spanish National Foundation (Grant PCI2019-103780).Peer ReviewedPostprint (published version

    UAVouch : a distributed drone identity and location validation mechanism

    Get PDF
    As aplicações emergentes de vigilância, com equipes de VANTs, dependem de comunicação segura para trocar informações, coordenar seus movimentos e cumprir os objetivos da missão. Proteger a rede identificando o acesso de nós mal-intencionados tentando perturbar o sistema é uma tarefa importante, e particularmente sensível no domínio militar. Observando essa necessidade, este artigo apresenta o design e a avaliação do UAVouch: Um esquema distribuído de validação de localização e identidade de drones que combina uma autenticação baseada em chave pública com uma verificação de plausibilidade de movimento para grupos de VANTs. A ideia principal do UAVouch complementa o mecanismo de autenticação, verificando periodicamente a plausibilidade da localização dos VANTs vizinhos, permitindo a detecção de intrusos que não conseguem seguir as trajetórias esperadas. A solução proposta foi avaliada em simulação através de um cenário de vigilância militar, no qual detectou-se ataques de falsificação de posição de nós mal-intencionados com precisão em média acima de 85%.Emerging surveillance applications of UAV teams rely on secure communication to exchange information, coordinate their movements, and fulfill mission objectives. Protecting the network by identifying malicious nodes access trying to disturb the system is an important task, which is particularly sensitive in the military domain. Observing this need, this paper presents the design and evaluation of UAVouch: an identity and location validation scheme combining a public-key based authentication with a movement plausibility check for groups of UAVs. The key idea of UAVouch supplement the authentication mechanism by periodically checking the plausibility of the location of neighboring UAVs, allowing the detection of intruders that are unable to follow expected trajectories. The proposed solution was evaluated in a simulated military surveillance scenario in which it detects malicious nodes’ position falsification attacks with an accuracy on average above 85%

    An Insight into Sybil Attacks – A Bibliometric Assessment

    Get PDF
    Sybil attack poses a significant security concern in both centralized and distributed network environments, wherein malicious adversary sabotage the network by impersonating itself as several nodes, called Sybil nodes. A Sybil attacker creates different identities for a single physical device to deceive other benign nodes, as well as uses these fake identities to hide from the detection process, thereby introducing a lack of accountability in the network. In this paper, we have thoroughly discussed the Sybil attack including its types, attack mechanisms, mitigation techniques that are in use today for the detection and prevention of such attacks. Subsequently, we have discussed the impact of the Sybil attack in various application domains and performed a bibliometric assessment in the top four scholarly databases. This will help the research community to quantitatively analyze the recent trends to determine the future research direction for the detection and prevention of such attacks

    A Survey on Attacks and Preservation Analysis of IDS in Vanet

    Get PDF
    Vehicular Ad-hoc Networks (VANETs) are the extremely famous enabling network expertise for Smart Transportation Systems. VANETs serve numerous pioneering impressive operations and prospects although transportation preservation and facilitation functions are their basic drivers. Numerous preservation allied VANETs functions are immediate and task imperative, which would entail meticulous assurance of preservation and authenticity. Yet non preservation associated multimedia operations, which would assist an imperative task in the future, would entail preservation assistance. Short of such preservation and secrecy in VANETs is one of the fundamental barriers to the extensive extended implementations of it. An anxious and untrustworthy VANET could be more hazardous than the structure without VANET assistance. So it is imperative to build specific that “life-critical preservation” data is protected adequate to rely on. Securing the VANETs including proper shield of the secrecy drivers or vehicle possessors is an extremely challenging assignment. In this research paper we review the assaults, equivalent preservation entails and objections in VANETs. We as well present the enormously admired common preservation guidelines which are based on avoidance as well recognition methods. Many VANETs operations entail system wide preservation support rather than individual layer from the VANETs’ protocol heap. This paper will also appraise the existing researches in the perception of holistic method of protection. Finally, we serve some potential future trends to attain system-wide preservation with secrecy pleasant preservation in VANETs. Keywords: VANET (Vehicular Ad-hoc Network), Routing algorithm, Vehicle preservation, IDS, attack, Secrec

    Secure and Authenticated Message Dissemination in Vehicular ad hoc Networks and an Incentive-Based Architecture for Vehicular Cloud

    Get PDF
    Vehicular ad hoc Networks (VANETs) allow vehicles to form a self-organized network. VANETs are likely to be widely deployed in the future, given the interest shown by industry in self-driving cars and satisfying their customers various interests. Problems related to Mobile ad hoc Networks (MANETs) such as routing, security, etc.have been extensively studied. Even though VANETs are special type of MANETs, solutions proposed for MANETs cannot be directly applied to VANETs because all problems related to MANETs have been studied for small networks. Moreover, in MANETs, nodes can move randomly. On the other hand, movement of nodes in VANETs are constrained to roads and the number of nodes in VANETs is large and covers typically large area. The following are the contributions of the thesis. Secure, authenticated, privacy preserving message dissemination in VANETs: When vehicles in VANET observe phenomena such as accidents, icy road condition, etc., they need to disseminate this information to vehicles in appropriate areas so the drivers of those vehicles can take appropriate action. When such messages are disseminated, the authenticity of the vehicles disseminating such messages should be verified while at the same time the anonymity of the vehicles should be preserved. Moreover, to punish the vehicles spreading malicious messages, authorities should be able to trace such messages to their senders when necessary. For this, we present an efficient protocol for the dissemination of authenticated messages. Incentive-based architecture for vehicular cloud: Due to the advantages such as exibility and availability, interest in cloud computing has gained lot of attention in recent years. Allowing vehicles in VANETs to store the collected information in the cloud would facilitate other vehicles to retrieve this information when they need. In this thesis, we present a secure incentive-based architecture for vehicular cloud. Our architecture allows vehicles to collect and store information in the cloud; it also provides a mechanism for rewarding vehicles that contributing to the cloud. Privacy preserving message dissemination in VANETs: Sometimes, it is sufficient to ensure the anonymity of the vehicles disseminating messages in VANETs. We present a privacy preserving message dissemination protocol for VANETs

    An Overview of Security Challenges in Vehicular Ad-Hoc Networks

    Full text link
    © 2017 IEEE. Vehicular Ad hoc Networks (VANET) is emerging as a promising technology of the Intelligent Transportation systems (ITS) due to its potential benefits for travel planning, notifying road hazards, cautioning of emergency scenarios, alleviating congestion, provisioning parking facilities and environmental predicaments. But, the security threats hinder its wide deployment and acceptability by users. This paper gives an overview of the security threats at the various layers of the VANET communication stack and discuss some of the existing solutions, thus concluding why designing a security framework for VANET needs to consider these threats for overcoming security challenges in VANET

    SECMACE: Scalable and Robust Identity and Credential Management Infrastructure in Vehicular Communication Systems

    Full text link
    Several years of academic and industrial research efforts have converged to a common understanding on fundamental security building blocks for the upcoming Vehicular Communication (VC) systems. There is a growing consensus towards deploying a special-purpose identity and credential management infrastructure, i.e., a Vehicular Public-Key Infrastructure (VPKI), enabling pseudonymous authentication, with standardization efforts towards that direction. In spite of the progress made by standardization bodies (IEEE 1609.2 and ETSI) and harmonization efforts (Car2Car Communication Consortium (C2C-CC)), significant questions remain unanswered towards deploying a VPKI. Deep understanding of the VPKI, a central building block of secure and privacy-preserving VC systems, is still lacking. This paper contributes to the closing of this gap. We present SECMACE, a VPKI system, which is compatible with the IEEE 1609.2 and ETSI standards specifications. We provide a detailed description of our state-of-the-art VPKI that improves upon existing proposals in terms of security and privacy protection, and efficiency. SECMACE facilitates multi-domain operations in the VC systems and enhances user privacy, notably preventing linking pseudonyms based on timing information and offering increased protection even against honest-but-curious VPKI entities. We propose multiple policies for the vehicle-VPKI interactions, based on which and two large-scale mobility trace datasets, we evaluate the full-blown implementation of SECMACE. With very little attention on the VPKI performance thus far, our results reveal that modest computing resources can support a large area of vehicles with very low delays and the most promising policy in terms of privacy protection can be supported with moderate overhead.Comment: 14 pages, 9 figures, 10 tables, IEEE Transactions on Intelligent Transportation System
    corecore