717 research outputs found

    Composite control Lyapunov functions for robust stabilization of constrained uncertain dynamical systems

    Get PDF
    This work presents innovative scientific results on the robust stabilization of constrained uncertain dynamical systems via Lyapunov-based state feedback control. Given two control Lyapunov functions, a novel class of smooth composite control Lyapunov functions is presented. This class, which is based on the R-functions theory, is universal for the stabilizability of linear differential inclusions and has the following property. Once a desired controlled invariant set is fixed, the shape of the inner level sets can be made arbitrary close to any given ones, in a smooth and non-homothetic way. This procedure is an example of ``merging'' two control Lyapunov functions. In general, a merging function consists in a control Lyapunov function whose gradient is a continuous combination of the gradients of the two parents control Lyapunov functions. The problem of merging two control Lyapunov functions, for instance a global control Lyapunov function with a large controlled domain of attraction and a local one with a guaranteed local performance, is considered important for several control applications. The main reason is that when simultaneously concerning constraints, robustness and optimality, a single Lyapunov function is usually suitable for just one of these goals, but ineffective for the others. For nonlinear control-affine systems, both equations and inclusions, some equivalence properties are shown between the control-sharing property, namely the existence of a single control law which makes simultaneously negative the Lyapunov derivatives of the two given control Lyapunov functions, and the existence of merging control Lyapunov functions. Even for linear systems, the control-sharing property does not always hold, with the remarkable exception of planar systems. For the class of linear differential inclusions, linear programs and linear matrix inequalities conditions are given for the the control-sharing property to hold. The proposed Lyapunov-based control laws are illustrated and simulated on benchmark case studies, with positive numerical results

    Application of a data-driven fuzzy control design to a wind turbine benchmark model

    Get PDF
    In general, the modelling of wind turbines is a challenging task, since they are complex dynamic systems, whose aerodynamics are nonlinear and unsteady. Accurate models should contain many degrees of freedom, and their control algorithm design must account for these complexities. However, these algorithms must capture the most important turbine dynamics without being too complex and unwieldy, mainly when they have to be implemented in real-time applications. The first contribution of this work consists of providing an application example of the design and testing through simulations, of a data-driven fuzzy wind turbine control. In particular, the strategy is based on fuzzy modelling and identification approaches to model-based control design. Fuzzy modelling and identification can represent an alternative for developing experimental models of complex systems, directly derived directly from measured input-output data without detailed system assumptions. Regarding the controller design, this paper suggests again a fuzzy control approach for the adjustment of both the wind turbine blade pitch angle and the generator torque. The effectiveness of the proposed strategies is assessed on the data sequences acquired from the considered wind turbine benchmark. Several experiments provide the evidence of the advantages of the proposed regulator with respect to different control methods

    Estimation and control of non-linear and hybrid systems with applications to air-to-air guidance

    Get PDF
    Issued as Progress report, and Final report, Project no. E-21-67

    Modeling and Stability Analysis of Nonlinear Sampled-Data Systems with Embedded Recovery Algorithms

    Get PDF
    Computer control systems for safety critical systems are designed to be fault tolerant and reliable, however, soft errors triggered by harsh environments can affect the performance of these control systems. The soft errors of interest which occur randomly, are nondestructive and introduce a failure that lasts a random duration. To minimize the effect of these errors, safety critical systems with error recovery mechanisms are being investigated. The main goals of this dissertation are to develop modeling and analysis tools for sampled-data control systems that are implemented with such error recovery mechanisms. First, the mathematical model and the well-posedness of the stochastic model of the sampled-data system are presented. Then this mathematical model and the recovery logic are modeled as a dynamically colored Petri net (DCPN). For stability analysis, these systems are then converted into piecewise deterministic Markov processes (PDP). Using properties of a PDP and its relationship to discrete-time Markov chains, a stability theory is developed. In particular, mean square equivalence between the sampled-data and its associated discrete-time system is proved. Also conditions are given for stability in distribution to the delta Dirac measure and mean square stability for a linear sampled-data system with recovery logic
    • …
    corecore