1,640 research outputs found

    Human Motion Trajectory Prediction: A Survey

    Full text link
    With growing numbers of intelligent autonomous systems in human environments, the ability of such systems to perceive, understand and anticipate human behavior becomes increasingly important. Specifically, predicting future positions of dynamic agents and planning considering such predictions are key tasks for self-driving vehicles, service robots and advanced surveillance systems. This paper provides a survey of human motion trajectory prediction. We review, analyze and structure a large selection of work from different communities and propose a taxonomy that categorizes existing methods based on the motion modeling approach and level of contextual information used. We provide an overview of the existing datasets and performance metrics. We discuss limitations of the state of the art and outline directions for further research.Comment: Submitted to the International Journal of Robotics Research (IJRR), 37 page

    Assessment of Collision Avoidance Strategies for an Underwater Transportation System

    Get PDF
    Transportation using multiple autonomous vehicles with detection avoidance capability is useful for military applications. It is important for such systems to avoid collisions with underwater obstacles in an effective way, while keeping track of the target location. In this paper, sensor-based and path-planning methods of external collision avoidance were investigated for an underwater transportation system. In particular, sensor-based wall-following and hard-switching collision avoidance strategies and an offline RRT* path-planning method was implemented on the simulation model of the transportation system of four Hovering Autonomous Underwater Vehicles (HAUVs). Time-domain motion simulations were performed with each method and their ability to avoid obstacles was compared. The hard-switching method resulted in high yaw moments which caused the vehicle to travel towards the goal by a longer distance. Conversely, in the wall-following method, the yaw moment was kept to zero. Moreover, the wall-following method was found to be better than the hard-switching method in terms of time and power efficiency. The comparison between the offline RRT* path-planning and wall-following methods showed that the fuel efficiency of the former is higher whilst its time efficiency is poorer. The major drawback of RRT* is that it can only avoid the previously known obstacles. In future, offline RRT* and wall following can be blended for a better solution. The outcome of this paper provides guidance for the selection of the most appropriate method for collision avoidance for an underwater transportation system

    Implementation and validation of an event-based real-time nonlinear model predictive control framework with ROS interface for single and multi-robot systems.

    Get PDF
    This paper presents the implementation and experimental validation of a central control framework. The presented framework addresses the need for a controller, which provides high performance combined with a low-computational load while being on-line adaptable to changes in the control scenario. Examples for such scenarios are cooperative control, task-based control and fault-tolerant control, where the system's topology, dynamics, objectives and constraints are changing. The framework combines a fast Nonlinear Model Predictive Control (NMPC), a communication interface with the Robot Operating System (ROS) as well as a modularization that allows an event-based change of the NMPC scenario. To experimentally validate performance and event-based adaptability of the framework, this paper is using a cooperative control scenario of Unmanned Aerial Vehicles (UAVs)

    Collision Free Navigation of a Multi-Robot Team for Intruder Interception

    Full text link
    In this report, we propose a decentralised motion control algorithm for the mobile robots to intercept an intruder entering (k-intercepting) or escaping (e-intercepting) a protected region. In continuation, we propose a decentralized navigation strategy (dynamic-intercepting) for a multi-robot team known as predators to intercept the intruders or in the other words, preys, from escaping a siege ring which is created by the predators. A necessary and sufficient condition for the existence of a solution of this problem is obtained. Furthermore, we propose an intelligent game-based decision-making algorithm (IGD) for a fleet of mobile robots to maximize the probability of detection in a bounded region. We prove that the proposed decentralised cooperative and non-cooperative game-based decision-making algorithm enables each robot to make the best decision to choose the shortest path with minimum local information. Then we propose a leader-follower based collision-free navigation control method for a fleet of mobile robots to traverse an unknown cluttered environment where is occupied by multiple obstacles to trap a target. We prove that each individual team member is able to traverse safely in the region, which is cluttered by many obstacles with any shapes to trap the target while using the sensors in some indefinite switching points and not continuously, which leads to saving energy consumption and increasing the battery life of the robots consequently. And finally, we propose a novel navigation strategy for a unicycle mobile robot in a cluttered area with moving obstacles based on virtual field force algorithm. The mathematical proof of the navigation laws and the computer simulations are provided to confirm the validity, robustness, and reliability of the proposed methods

    A Review of Shared Control for Automated Vehicles: Theory and Applications

    Get PDF
    The last decade has shown an increasing interest on advanced driver assistance systems (ADAS) based on shared control, where automation is continuously supporting the driver at the control level with an adaptive authority. A first look at the literature offers two main research directions: 1) an ongoing effort to advance the theoretical comprehension of shared control, and 2) a diversity of automotive system applications with an increasing number of works in recent years. Yet, a global synthesis on these efforts is not available. To this end, this article covers the complete field of shared control in automated vehicles with an emphasis on these aspects: 1) concept, 2) categories, 3) algorithms, and 4) status of technology. Articles from the literature are classified in theory- and application-oriented contributions. From these, a clear distinction is found between coupled and uncoupled shared control. Also, model-based and model-free algorithms from these two categories are evaluated separately with a focus on systems using the steering wheel as the control interface. Model-based controllers tested by at least one real driver are tabulated to evaluate the performance of such systems. Results show that the inclusion of a driver model helps to reduce the conflicts at the steering. Also, variables such as driver state, driver effort, and safety indicators have a high impact on the calculation of the authority. Concerning the evaluation, driver-in-the-loop simulators are the most common platforms, with few works performed in real vehicles. Implementation in experimental vehicles is expected in the upcoming years.This work was supported in part by the ECSEL Joint Undertaking, which funded the PRYSTINE project under Grant 783190, and in part by the AUTOLIB project (ELKARTEK 2019 ref. KK-2019/00035; Gobierno Vasco Dpto. Desarrollo económico e infraestructuras)
    • …
    corecore