1,123 research outputs found

    Observation of chaotic beats in a driven memristive Chua's circuit

    Get PDF
    In this paper, a time varying resistive circuit realising the action of an active three segment piecewise linear flux controlled memristor is proposed. Using this as the nonlinearity, a driven Chua's circuit is implemented. The phenomenon of chaotic beats in this circuit is observed for a suitable choice of parameters. The memristor acts as a chaotically time varying resistor (CTVR), switching between a less conductive OFF state and a more conductive ON state. This chaotic switching is governed by the dynamics of the driven Chua's circuit of which the memristor is an integral part. The occurrence of beats is essentially due to the interaction of the memristor aided self oscillations of the circuit and the external driving sinusoidal forcing. Upon slight tuning/detuning of the frequencies of the memristor switching and that of the external force, constructive and destructive interferences occur leading to revivals and collapses in amplitudes of the circuit variables, which we refer as chaotic beats. Numerical simulations and Multisim modelling as well as statistical analyses have been carried out to observe as well as to understand and verify the mechanism leading to chaotic beats.Comment: 30 pages, 16 figures; Submitted to IJB

    Experimental evidence for vibrational resonance and enhanced signal transmission in Chua's circuit

    Full text link
    We consider a single Chua's circuit and a system of a unidirectionally coupled n-Chua's circuits driven by a biharmonic signal with two widely different frequencies \omega and \Omega, where \Omega >> \omega. We show experimental evidence for vibrational resonance in the single Chua's circuit and undamped signal propagation of a low-frequency signal in the system of n-coupled Chua's circuits where only the first circuit is driven by the biharmonic signal. In the single circuit, we illustrate the mechanism of vibrational resonance and the influence of the biharmonic signal parameters on the resonance. In the n(= 75)-coupled Chua's circuits enhanced propagation of low-frequency signal is found to occur for a wide range of values of the amplitude of the high-frequency input signal and coupling parameter. The response amplitude of the ith circuit increases with i and attains a saturation. Moreover, the unidirectional coupling is found to act as a low-pass filter.Comment: 15 pages, 12 figures, Accepted for Publication in International Journal of Bifurcation and Chao

    Teaching Memory Circuit Elements via Experiment-Based Learning

    Full text link
    The class of memory circuit elements which comprises memristive, memcapacitive, and meminductive systems, is gaining considerable attention in a broad range of disciplines. This is due to the enormous flexibility these elements provide in solving diverse problems in analog/neuromorphic and digital/quantum computation; the possibility to use them in an integrated computing-memory paradigm, massively-parallel solution of different optimization problems, learning, neural networks, etc. The time is therefore ripe to introduce these elements to the next generation of physicists and engineers with appropriate teaching tools that can be easily implemented in undergraduate teaching laboratories. In this paper, we suggest the use of easy-to-build emulators to provide a hands-on experience for the students to learn the fundamental properties and realize several applications of these memelements. We provide explicit examples of problems that could be tackled with these emulators that range in difficulty from the demonstration of the basic properties of memristive, memcapacitive, and meminductive systems to logic/computation and cross-bar memory. The emulators can be built from off-the-shelf components, with a total cost of a few tens of dollars, thus providing a relatively inexpensive platform for the implementation of these exercises in the classroom. We anticipate that this experiment-based learning can be easily adopted and expanded by the instructors with many more case studies.Comment: IEEE Circuits and Systems Magazine (in press
    • …
    corecore