67 research outputs found

    Modelling and Analysis of Bidirectional DC-DC Converter

    Get PDF
    Bidirectional dc-dc converters are used lots of industrial areas such as electric vehicles, uninterruptable power supplies, fuel cells, solar panel cells as energy sources are searched in order to improve the quality of power at the transmission, distribution lines and other areas. The main contribution of this paper, applying the most common used control method on single phase isolated bidirectional full bridge dc-dc converter and comparing this control method (Extended Phase Shift – EPS) on efficiency way by with/without using snubber capacitors. In this paper, Isolated Bidirectional DC-DC Converter topology is modelled and controller algorithm is written by FORTRAN programming language. According to the results, it is observed that efficiency result of the converter, using snubber capacitors in the converter topology has higher performance than the snubberless system

    Enhanced performance modified discontinuous PWM technique for three phase Z-source inverter

    Get PDF
    Various industrial applications require a voltage conversion stage from DC to AC. Among them, commercial renewable energy systems (RES) need a voltage buck and/or boost stage for islanded/grid connected operation. Despite the excellent performance offered by conventional two-stage converter systems (DC-DC followed by dc-ac stages), the need for a single-stage conversion stage is attracting more interest for cost and size reduction reasons. Although voltage source inverters (VSIs) are voltage buck-only converters, single stage current source inverters (CSIs) can offer voltage boost features, although at the penalty of using a large DC-link inductor. Boost inverters are a good candidate with the demerit of complicated control strategies. The impedance source (Z-source) inverter is a high-performance competitor as it offers voltage buck/boost in addition to a reduced passive component size. Several pulse width modulation (PWM) techniques have been presented in the literature for three-phase Z-source inverters. Various common drawbacks are annotated, especially the non-linear behavior at low modulation indices and the famous trade-off between the operating range and the converter switches' voltage stress. In this paper, a modified discontinuous PWM technique is proposed for a three-phase z-source inverter offering: (i) smooth voltage gain variation, (ii) a wide operating range, (iii) reduced voltage stress, and (iv) improved total harmonic distortion (THD). Simulation, in addition to experimental results at various operating conditions, validated the proposed PWM technique's superior performance compared to the conventional PWM techniques

    Z Source Inverter Topologies-A Survey

    Get PDF
    Need for alternative energy sources to satisfy the rising demand in energy consumption elicited the research in the area of power converters/inverters. An increasing interest of using Z source inverter/converter in power generation involving renewable energy sources like wind and solar energy for both off grid and grid tied schemes were originated from 2003. This paper surveys the literature of Z source inverters/converter topologies that were developed over the years

    Quasi-Z-source-based bidirectional DC-DC converters for renewable energy applications

    Full text link
    This article presents a design, analysis, and implementation of a novel impedance-source-based bidirectional DC-DC converter. The proposed converter employs an impedance network to the existing dual-active-bridge (DAB) circuit. It inherits all the advantages of the DAB converter along with extra benefits. Compared with the traditional isolated DC-DC converter, the proposed converter improved the boost ability of the converter. Also, the converter can withstand the shoot-through phenomenon in an H-bridge, improving the reliability. The converter can work in the normal buck/boost DAB mode when extra boost is not required. The bidirectional feature is inherent along with soft switching capability. It is therefore well-suited for the applications, where wide range of voltage gains are required such as renewable energy systems. The topological configuration and control strategy of the proposed topology in both operational modes are discussed. Simulation and experiments have been carried out to demonstrate the effectiveness of the proposed converter topology. The peak efficiency 97% was observed at the rated load of 500 W

    A comprehensive review on Bidirectional traction converter for Electric vehicles

    Get PDF
    In this fast-changing environmental condition, the effect of fossil fuel in vehicle is a significant concern. Many sustainable sources are being studied to replace the exhausting fossil fuel in most of the countries. This paper surveys the types of electric vehicle’s energy sources and current scenario of the on-road electric vehicle and its technical challenges. It summarizes the number of state-of-the-art research progresses in bidirectional dc-dc converters and its control strategies reported in last two decades. The performance of the various topologies of bidirectional dc-dc converters is also tabulated along with their references. Hence, this work will present a clear view on the development of state-of-the-art topologies in bidirectional dc-dc converters. This review paper will be a guide for the researchers for selecting suitable bidirectional traction dc-dc converters for electric vehicle and it gives the clear picture of this research field

    Dynamic model of A DC-DC quasi-Z-source converter (q-ZSC)

    Get PDF
    Two quasi-Z-source DC-DC converters (q-ZSCs) with buck-boost converter gain were recently proposed. The converters have advantages of continuous gain curve, higher gain magnitude and buck-boost operation at efficient duty ratio range when compared with existing q-ZSCs. Accurate dynamic models of these converters are needed for global and detailed overview by understanding their operation limits and effects of components sizes. A dynamic model of one of these converters is proposed here by first deriving the gain equation, state equations and state space model. A generalized small signal model was also derived before localizing it to this topology. The transfer functions (TF) were all derived, the poles and zeros analyzed with the boundaries for stable operations presented and discussed. Some of the findings include existence of right-hand plane (RHP) zero in the duty ratio to output capacitor voltage TF. This is common to the Z-source and quasi-Z-source topologies and implies control limitations. Parasitic resistances of the capacitors and inductors affect the nature and positions of the poles and zeros. It was also found and verified that rather than symmetric components, use of carefully selected smaller asymmetric components L1 and C1 produces less parasitic voltage drop, higher output voltage and current under the same conditions, thus better efficiency and performance at reduced cost, size and weight

    Enhanced Performance Bidirectional Quasi-Z-Source Inverter Controller

    Get PDF
    A novel direct control of high performance bidirectional quasi-Z-source inverter (HPB-QZSI), with optimized controllable shoot-through insertion, to improve the voltage gain, efficiency and to reduce total harmonic distortion is investigated. The main drawback of the conventional control techniques for direct current to alternating current (DC-AC) conversion is drawn from the multistage energy conversion structure, which implies complicated control, protection algorithms and reduced reliability due to the increased number of switching devices. Theoretically, the original Z-source, Quasi-Z-source, and embedded Z-source all have unlimited voltage gain. Practically, however, a high voltage gain (>2 or 3), will result in a high voltage stress imposed on the switches. Every additional shoot-through state increases the commutation time of the semiconductor switches, thereby increasing the switching losses in the system. Hence, minimization of the commutation time by optimal placing of the shoot-through state in the switching time period is necessary to reduce the switching loss. To overcome this problem, a combination of high performance bidirectional quasi-Z-source inverter with a sawtooth carrier based sinusoidal pulse width modulation (SPWM) in simple operation condition for maximum boost control with 3rd harmonic injection is proposed. This is achieved by voltage-fed quasi-Z-source inverter with continuous input current, implemented at the converter input side which can boost the input voltage by utilizing the extra switching state with the help of shoot-through state insertion technique. This thesis presents novel control concepts for such a structure, focusing mainly on the control of a shoot-through insertion. The work considers the derivation and application of direct controllers for this application and scrutinizes the technical advantages and potential application issues of these methodologies. Based on the circuit analysis, a small signal model of the HPB-QZSI is derived, which indicates that the circuit is prone to oscillate when there is disturbance on the direct current (DC) input voltage. Therefore, a closed-loop control of shoot-through duty cycle is designed to obtain the desired DC bus voltage. The DC-link boost control and alternating current (AC) side output control are presented to reduce the impacts of disturbances on loads. The proposed strategy gives a significantly high voltage gain compared to the conventional pulse width modulation (PWM) techniques, since all the zero states are converted into shoot-through states. The simulated results verify the validity and superiority of the proposed control strategies

    Design and analysis of current stress minimalisation controllers in multi-active bridge DC-DC converters.

    Get PDF
    Multi active bridge (MAB) DC-DC converters have attracted significant research attention in power conversion applications within DC microgrids, medium voltage DC and high voltage DC transmission systems. This is encouraged by MAB's several functionalities such as DC voltage stepping/matching, bidirectional power flow regulation and DC fault isolation. In that sense this family of DC-DC converters is similar to AC transformers in AC grids and are hence called DC transformers. However, DC transformers are generally less efficient compared to AC transformers, due to the introduction of power electronics. Moreover, the control scheme design is challenging in DC transformers, due to its nonlinear characteristics and multi degrees of freedom introduced by the phase shift control technique of the converter bridges. The main purpose of this research is to devise control techniques that enhance the conversion efficiency of DC transformers via the minimisation of current stresses. This is achieved by designing two generalised controllers that minimise current stresses in MAB DC transformers. The first controller is for a dual active bridge (DAB). This is the simplest form of MAB, where particle swarm optimisation (PSO) is implemented offline to obtain optimal triple phase shift (TPS) parameters, for minimising the RMS current. This is achieved by applying PSO on DAB steady-state model, with generic per unit expressions of converter AC RMS current and transferred power under all possible switching modes. Analysing the generic data pool generated by the offline PSO algorithm enabled the design of a generic real-time closed-loop PI-based controller. The proposed control scheme achieves bidirectional active power regulation in DAB over the 1 to -1 pu power range with minimum-RMS-current for buck/boost/unity modes, without the need for online optimisation or memory-consuming look-up tables. Extending the same controller design procedure for MAB was deemed not feasible, as it would involve a highly complex PSO exercise that is difficult to generalise for N number of bridges; it would therefore generate a massive data pool that would be quite cumbersome to analyse and generalise. For this reason, a second controller is developed for MAB converter without using a converter-based model, where current stress is minimised and active power is regulated. This is achieved through a new real-time minimum-current point-tracking (MCPT) algorithm, which realises iterative-based optimisation search using adaptive-step perturb and observe (P&O) method. Active power is regulated in each converter bridge using a new power decoupler algorithm. The proposed controller is generalised to MAB regardless of the number of ports, power level and values of DC voltage ratios between the different ports. Therefore, it does not require an extensive look-up table for implementation, the need for complex non-linear converter modelling and it is not circuit parameter-dependent. The main disadvantages of this proposed controller are the slightly slow transient response and the number of sensors it requires
    • …
    corecore