307 research outputs found

    Three-dimensional media for mobile devices

    Get PDF
    Cataloged from PDF version of article.This paper aims at providing an overview of the core technologies enabling the delivery of 3-D Media to next-generation mobile devices. To succeed in the design of the corresponding system, a profound knowledge about the human visual system and the visual cues that form the perception of depth, combined with understanding of the user requirements for designing user experience for mobile 3-D media, are required. These aspects are addressed first and related with the critical parts of the generic system within a novel user-centered research framework. Next-generation mobile devices are characterized through their portable 3-D displays, as those are considered critical for enabling a genuine 3-D experience on mobiles. Quality of 3-D content is emphasized as the most important factor for the adoption of the new technology. Quality is characterized through the most typical, 3-D-specific visual artifacts on portable 3-D displays and through subjective tests addressing the acceptance and satisfaction of different 3-D video representation, coding, and transmission methods. An emphasis is put on 3-D video broadcast over digital video broadcasting-handheld (DVB-H) in order to illustrate the importance of the joint source-channel optimization of 3-D video for its efficient compression and robust transmission over error-prone channels. The comparative results obtained identify the best coding and transmission approaches and enlighten the interaction between video quality and depth perception along with the influence of the context of media use. Finally, the paper speculates on the role and place of 3-D multimedia mobile devices in the future internet continuum involving the users in cocreation and refining of rich 3-D media content

    Proceedings of the Second International Mobile Satellite Conference (IMSC 1990)

    Get PDF
    Presented here are the proceedings of the Second International Mobile Satellite Conference (IMSC), held June 17-20, 1990 in Ottawa, Canada. Topics covered include future mobile satellite communications concepts, aeronautical applications, modulation and coding, propagation and experimental systems, mobile terminal equipment, network architecture and control, regulatory and policy considerations, vehicle antennas, and speech compression

    Dynamic Optical Networks for Data Centres and Media Production

    Get PDF
    This thesis explores all-optical networks for data centres, with a particular focus on network designs for live media production. A design for an all-optical data centre network is presented, with experimental verification of the feasibility of the network data plane. The design uses fast tunable (< 200 ns) lasers and coherent receivers across a passive optical star coupler core, forming a network capable of reaching over 1000 nodes. Experimental transmission of 25 Gb/s data across the network core, with combined wavelength switching and time division multiplexing (WS-TDM), is demonstrated. Enhancements to laser tuning time via current pre-emphasis are discussed, including experimental demonstration of fast wavelength switching (< 35 ns) of a single laser between all combinations of 96 wavelengths spaced at 50 GHz over a range wider than the optical C-band. Methods of increasing the overall network throughput by using a higher complexity modulation format are also described, along with designs for line codes to enable pulse amplitude modulation across the WS-TDM network core. The construction of an optical star coupler network core is investigated, by evaluating methods of constructing large star couplers from smaller optical coupler components. By using optical circuit switches to rearrange star coupler connectivity, the network can be partitioned, creating independent reserves of bandwidth and resulting in increased overall network throughput. Several topologies for constructing a star from optical couplers are compared, and algorithms for optimum construction methods are presented. All of the designs target strict criteria for the flexible and dynamic creation of multicast groups, which will enable future live media production workflows in data centres. The data throughput performance of the network designs is simulated under synthetic and practical media production traffic scenarios, showing improved throughput when reconfigurable star couplers are used compared to a single large star. An energy consumption evaluation shows reduced network power consumption compared to incumbent and other proposed data centre network technologies

    MPEG-4 natural video coding - An overview

    Get PDF
    This paper describes the MPEG-4 standard, as defined in ISO/IEC 14496-2. The MPEG-4 visual standard is developed to provide users a new level of interaction with visual contents. It provides technologies to view, access and manipulate objects rather than pixels, with great error robustness at a large range of bit-rates. Application areas range from digital television, streaming video, to mobile multimedia and games. The MPEG-4 natural video standard consists of a collection of tools that support these application areas. The standard provides tools for shape coding, motion estimation and compensation, texture coding, error resilience, sprite coding and scalability. Conformance points in the form of object types, profiles and levels, provide the basis for interoperability. Shape coding can be performed in binary mode, where the shape of each object is described by a binary mask, or in gray scale mode, where the shape is described in a form similar to an alpha channel, allowing transparency, and reducing aliasing. Motion compensation is block based, with appropriate modifications for object boundaries. The block size can be 16×16, or 8×8, with half pixel resolution. MPEG-4 also provides a mode for overlapped motion compensation. Texture coding is based in 8×8 DCT, with appropriate modifications for object boundary blocks. Coefficient prediction is possible to improve coding efficiency. Static textures can be encoded using a wavelet transform. Error resilience is provided by resynchronization markers, data partitioning, header extension codes, and reversible variable length codes. Scalability is provided for both spatial and temporal resolution enhancement. MPEG-4 provides scalability on an object basis, with the restriction that the object shape has to be rectangular. MPEG-4 conformance points are defined at the Simple Profile, the Core Profile, and the Main Profile. Simple Profile and Core Profiles address typical scene sizes of QCIF and CIF size, with bit-rates of 64, 128, 384 and 2 Mbit/s. Main Profile addresses a typical scene sizes of CIF, ITU-R 601 and HD, with bit-rates at 2, 15 and 38.4 Mbit/s

    Efficient algorithms for scalable video coding

    Get PDF
    A scalable video bitstream specifically designed for the needs of various client terminals, network conditions, and user demands is much desired in current and future video transmission and storage systems. The scalable extension of the H.264/AVC standard (SVC) has been developed to satisfy the new challenges posed by heterogeneous environments, as it permits a single video stream to be decoded fully or partially with variable quality, resolution, and frame rate in order to adapt to a specific application. This thesis presents novel improved algorithms for SVC, including: 1) a fast inter-frame and inter-layer coding mode selection algorithm based on motion activity; 2) a hierarchical fast mode selection algorithm; 3) a two-part Rate Distortion (RD) model targeting the properties of different prediction modes for the SVC rate control scheme; and 4) an optimised Mean Absolute Difference (MAD) prediction model. The proposed fast inter-frame and inter-layer mode selection algorithm is based on the empirical observation that a macroblock (MB) with slow movement is more likely to be best matched by one in the same resolution layer. However, for a macroblock with fast movement, motion estimation between layers is required. Simulation results show that the algorithm can reduce the encoding time by up to 40%, with negligible degradation in RD performance. The proposed hierarchical fast mode selection scheme comprises four levels and makes full use of inter-layer, temporal and spatial correlation aswell as the texture information of each macroblock. Overall, the new technique demonstrates the same coding performance in terms of picture quality and compression ratio as that of the SVC standard, yet produces a saving in encoding time of up to 84%. Compared with state-of-the-art SVC fast mode selection algorithms, the proposed algorithm achieves a superior computational time reduction under very similar RD performance conditions. The existing SVC rate distortion model cannot accurately represent the RD properties of the prediction modes, because it is influenced by the use of inter-layer prediction. A separate RD model for inter-layer prediction coding in the enhancement layer(s) is therefore introduced. Overall, the proposed algorithms improve the average PSNR by up to 0.34dB or produce an average saving in bit rate of up to 7.78%. Furthermore, the control accuracy is maintained to within 0.07% on average. As aMADprediction error always exists and cannot be avoided, an optimisedMADprediction model for the spatial enhancement layers is proposed that considers the MAD from previous temporal frames and previous spatial frames together, to achieve a more accurateMADprediction. Simulation results indicate that the proposedMADprediction model reduces the MAD prediction error by up to 79% compared with the JVT-W043 implementation

    From Capture to Display: A Survey on Volumetric Video

    Full text link
    Volumetric video, which offers immersive viewing experiences, is gaining increasing prominence. With its six degrees of freedom, it provides viewers with greater immersion and interactivity compared to traditional videos. Despite their potential, volumetric video services poses significant challenges. This survey conducts a comprehensive review of the existing literature on volumetric video. We firstly provide a general framework of volumetric video services, followed by a discussion on prerequisites for volumetric video, encompassing representations, open datasets, and quality assessment metrics. Then we delve into the current methodologies for each stage of the volumetric video service pipeline, detailing capturing, compression, transmission, rendering, and display techniques. Lastly, we explore various applications enabled by this pioneering technology and we present an array of research challenges and opportunities in the domain of volumetric video services. This survey aspires to provide a holistic understanding of this burgeoning field and shed light on potential future research trajectories, aiming to bring the vision of volumetric video to fruition.Comment: Submitte

    Communication networks beyond the capacity crunch

    Get PDF
    This issue of Philosophical Transactions of the Royal Society, Part A represents a summary of the recent discussion meeting 'Communication networks beyond the capacity crunch'. The purpose of the meeting was to establish the nature of the capacity crunch, estimate the time scales associated with it and to begin to find solutions to enable continued growth in a post-crunch era. The meeting confirmed that, in addition to a capacity shortage within a single optical fibre, many other 'crunches' are foreseen in the field of communications, both societal and technical. Technical crunches identified included the nonlinear Shannon limit, wireless spectrum, distribution of 5G signals (front haul and back haul), while societal influences included net neutrality, creative content generation and distribution and latency, and finally energy and cost. The meeting concluded with the observation that these many crunches are genuine and may influence our future use of technology, but encouragingly noted that research and business practice are already moving to alleviate many of the negative consequences

    Trade-off study of data storage technologies

    Get PDF
    The need to store and retrieve large quantities of data at modest cost has generated the need for an economical, compact, archival mass storage system. Very significant improvements in the state-of-the-art of mass storage systems have been accomplished through the development of a number of magnetic, electro-optical, and other related devices. This study was conducted in order to do a trade-off between these data storage devices and the related technologies in order to determine an optimum approach for an archival mass data storage system based upon a comparison of the projected capabilities and characteristics of these devices to yield operational systems in the early 1980's

    VLSI implementation of a massively parallel wavelet based zerotree coder for the intelligent pixel array

    Get PDF
    In the span of a few years, mobile multimedia communication has rapidly become a significant area of research and development constantly challenging boundaries on a variety of technologic fronts. Mobile video communications in particular encompasses a number of technical hurdles that generally steer technological advancements towards devices that are low in complexity, low in power usage yet perform the given task efficiently. Devices of this nature have been made available through the use of massively parallel processing arrays such as the Intelligent Pixel Processing Array. The Intelligent Pixel Processing array is a novel concept that integrates a parallel image capture mechanism, a parallel processing component and a parallel display component into a single chip solution geared toward mobile communications environments, be it a PDA based system or the video communicator wristwatch portrayed in Dick Tracy episodes. This thesis details work performed to provide an efficient, low power, low complexity solution surrounding the massively parallel implementation of a zerotree entropy codec for the Intelligent Pixel Array

    Applications of satellite technology to broadband ISDN networks

    Get PDF
    Two satellite architectures for delivering broadband integrated services digital network (B-ISDN) service are evaluated. The first is assumed integral to an existing terrestrial network, and provides complementary services such as interconnects to remote nodes as well as high-rate multicast and broadcast service. The interconnects are at a 155 Mbs rate and are shown as being met with a nonregenerative multibeam satellite having 10-1.5 degree spots. The second satellite architecture focuses on providing private B-ISDN networks as well as acting as a gateway to the public network. This is conceived as being provided by a regenerative multibeam satellite with on-board ATM (asynchronous transfer mode) processing payload. With up to 800 Mbs offered, higher satellite EIRP is required. This is accomplished with 12-0.4 degree hopping beams, covering a total of 110 dwell positions. It is estimated the space segment capital cost for architecture one would be about 190Mwhereasthesecondarchitecturewouldbeabout190M whereas the second architecture would be about 250M. The net user cost is given for a variety of scenarios, but the cost for 155 Mbs services is shown to be about $15-22/minute for 25 percent system utilization
    corecore