62 research outputs found

    Efficient Power Allocation Schemes for Hybrid Decode-Amplify-Forward Relay Based Wireless Cooperative Network

    Get PDF
    Cooperative communication in various wireless domains, such as cellular networks, sensor networks and wireless ad hoc networks, has gained significant interest recently. In cooperative network, relays between the source and the destination, form a virtual MIMO that creates spatial diversity at the destination, which overcomes the fading effect of wireless channels. Such relay assisted schemes have potential to increase the channel capacity and network coverage. Most current research on cooperative communication are focused broadly on efficient protocol design and analysis, resource allocation, relay selection and cross layer optimization. The first part of this research aims at introducing hybrid decode-amplify-forward (HDAF) relaying in a distributed Alamouti coded cooperative network. Performance of such adaptive relaying scheme in terms of symbol error rate (SER), outage probability and average channel capacity is derived theoretically and verified through simulation based study. This work is further extended to a generalized multi HDAF relaying cooperative frame work. Various efficient power allocation schemes such as maximized channel capacity based, minimized SER based and total power minimization based are proposed and their superiority in performance over the existing equal power allocation scheme is demonstrated in the simulation results. Due to the broadcast nature of wireless transmission, information privacy in wireless networks becomes a critical issue. In the context of physical layer security, the role of multi HDAF relaying based cooperative model with control jamming and multiple eavesdroppers is explored in the second part of the research. Performance evaluation parameters such as secrecy rate, secrecy outage and intercept probability are derived theoretically. Further the importance of the proposed power allocation schemes in enhancing the secrecy performance of the network in the presence of multiple eavesdroppers is studied in detail through simulation based study and analysis. For all the proposed power allocation schemes in this research, the optimization problems are defined under total power constraint and are solved using Lagrange multiplier method and also evolutionary algorithms such as Differential evolution and Invasive Weed Optimization are employed. Monte Carlo simulation based study is adopted throughout the research. It is concluded that HDAF relaying based wireless cooperative network with optimal power allocation schemes offers improved and reliable performance compared to conventional amplify forward and decode forward relaying schemes. Above research contributions will be applicable for future generation wireless cooperative networks

    Signal space cooperative communication with partial relay selection.

    Get PDF
    Thesis (M.Sc.Eng.)-University of KwaZulu-Natal, Durban, 2012.Exploiting the available diversity from various sources in wireless networks is an easy way to improve performance at the expense of additional hardware, space, complexity and/or bandwidth. Signal space diversity (SSD) and cooperative communication are two promising techniques that exploit the available signal space and space diversity respectively. This study first presents symbol error rate (SER) analysis of an SSD system containing a single transmit antenna and N receive antennas with maximal-ratio combining (MRC) reception; thereafter it presents a simplified maximum-likelihood (ML) detection scheme for SSD systems, and finally presents the incorporation of SSD into a distributed switch and stay combining with partial relay selection (DSSC-PRS) system. Performance analysis of an SSD system containing a single transmit antenna and multiple receive antennas with MRC reception has been presented previously in the literature using the nearest neighbour (NN) approximation to the union bound, however results were not presented in closed form. Hence, closed form expressions are presented in this work. A new lower bound for the SER of an SSD system is also presented which is simpler to evaluate than the union bound/NN approximation and also simpler to use with other systems. The new lower bound is based on the minimum Euclidean distance of a rotated constellation and is termed the minimum distance lower bound (MDLB); it is also presented here in closed form. The presented bounds have been validated with simulation and found to be tight under certain conditions. The SSD scheme offers error performance and diversity benefits with the only penalty being an increase in detector complexity. Detection is performed in the ML sense and conventionally, all points in an M-ary quadrature amplitude modulation (M-QAM) constellation are searched to find the transmitted symbol. Hence, a simplified detection scheme is proposed that only searches m symbols from M after performing initial signal conditioning. The simplified detection scheme is able to provide SER performance close to that of optimal ML detection in systems with multiple receive antennas. Cooperative communication systems can benefit from the error performance and diversity gains of the spectrally efficient SSD scheme since it requires no additional hardware, bandwidth or transmit power. Integrating SSD into a DSSC-PRS system has shown an improvement of approximately 5dB at an SER of 10-4 with a slight decrease in spectral efficiency at low SNR. Analysis has been performed using the newly derived MDLB and confirmed with simulation

    Contributions to the Performance Analysis of Intervehicular Communications Systems and Schemes

    Get PDF
    RÉSUMÉ Le but des systèmes de communication intervéhicule (Inter-Vehicle Communication – IVC) est d'améliorer la sécurité de conduite en utilisant des capteurs et des techniques de communication sans fil pour être en mesure de communiquer mutuellement sans aucune intervention extérieure. Avec l'utilisation de ces systèmes, les communications véhicule à véhicule (V2V) peuvent être plus efficaces dans la prévention des accidents et la décongestion de la circulation que si chaque véhicule travaillait individuellement. Une des solutions proposées pour les systèmes IVC est l’utilisation des systèmes de communication coopérative, qui en principe, augmentent l'efficacité spectrale et énergétique, la couverture du réseau, et réduit la probabilité de défaillance. La diversité d'antenne (entrées multiples sorties multiples « Multiple-Input Multiple-Output » ou MIMO) peut également être une alternative pour les systèmes IVC pour améliorer la capacité du canal et la diversité (fiabilité), mais en échange d’une complexité accrue. Toutefois, l'application de telles solutions est difficile, car les communications sans fil entre les véhicules sont soumises à d’importants effets d'évanouissements des canaux appelés (canaux sujets aux évanouissements de n*Rayleigh, « n*Rayleigh fading channels»), ce qui conduit à la dégradation des performances. Par conséquent, dans cette thèse, nous proposons une analyse de la performance globale des systèmes de transmission coopératifs et MIMO sur des canaux sujets aux évanouissements de n*Rayleigh. Cette analyse permettra d’aider les chercheurs pour la conception et la mise en œuvre de systèmes de communication V2V avec une complexité moindre. En particulier, nous étudions d'abord la performance de la sélection du relais de coopération avec les systèmes IVC, on suppose que la transmission via « Amplify-and-Forward» (AF) ou bien «Decode-and-Forward» (DF) est assurée par N relais pour transférer le message de la source à la destination. La performance du système est analysée en termes de probabilité de défaillance, la probabilité d'erreur de symbole, et la capacité moyenne du canal. Les résultats numériques démontrent que la sélection de relais réalise une diversité de l'ordre de (d≈mN/n) pour les deux types de relais, où m est un paramètre évanouissement de Rayleigh en cascade. Nous étudions ensuite la performance des systèmes IVC à sauts multiples avec et sans relais régénératifs. Dans cette étude, nous dérivons des expressions approximatives pour la probabilité de défaillance et le niveau d’évanouissement lorsque la diversité en réception basée sur le ratio maximum de combinaison (MRC) est employée. En outre, nous analysons la répartition de puissance pour le système sous-jacent afin de minimiser la probabilité globale de défaillance. Nous montrons que la performance des systèmes régénératifs est meilleure que celle des systèmes non régénératifs lorsque l’ordre de cascade n est faible, tandis qu’ils ont des performances similaires lorsque n est élevé. Ensuite, nous considérons le problème de la détection de puissance des signaux inconnus aux n* canaux de Rayleigh. Dans ce travail, de nouvelles expressions approximatives sont dérivées de la probabilité de détection moyenne avec et sans diversité en réception MRC. En outre, la performance du système est analysée lorsque la détection de spectre coopérative (CSS) est considérée sous diverses contraintes de canaux (par exemple, les canaux de communication parfaits et imparfaits). Les résultats numériques ont montré que la fiabilité de détection diminue à mesure que l'ordre n augmente et s’améliore sensiblement lorsque CSS emploie le schéma MRC. Il est démontré que CSS avec le schéma MRC maintient la probabilité de fausse alarme minimale dans les canaux d’information imparfaite plutôt que d'augmenter le nombre d'utilisateurs en coopération. Enfin, nous présentons une nouvelle approche pour l'analyse des performances des systèmes IVC sur n*canaux de Rayleigh, en utilisant n_T antennes d'émission et n_R antennes de réception pour lutter contre l'effet d’évanouissement. Dans ce contexte, nous évaluons la performance des systèmes MIMO-V2V basés sur la sélection des antennes d'émission avec un ratio maximum de combinaison (TAS/MRC) et la sélection combinant (TAS/SC). Dans cette étude, nous dérivons des expressions analytiques plus précises pour la probabilité de défaillance, la probabilité d'erreur de symbole, et l’évanouissement sur n*canaux Rayleigh. Il est montré que les deux régimes ont le même ordre de diversité maximale équivalent à (d≈mn_T n_R /n) . En outre, TAS / MRC offre un gain de performance mieux que TAS/ SC lorsque le nombre d'antennes de réception est plus que celle des antennes d’émission, mais l’amélioration de la performance est limitée lorsque n augmente.----------Abstract The purpose of intervehicular communication (IVC) systems is to enhance driving safety, in which vehicles use sensors and wireless communication techniques to talk to each other without any roadside intervention. Using these systems, vehicle-to-vehicle (V2V) communications can be more effective in avoiding accidents and traffic congestion than if each vehicle works individually. A potential solution can be implemented in this research area using cooperative communications systems which, in principle, increase spectral and power efficiency, network coverage, and reduce the outage probability. Antenna diversity (i.e., multiple-input multiple output (MIMO) systems) can also be an alternative solution for IVC systems to enhance channel capacity and diversity (reliability) but in exchange of an increased complexity. However, applying such solutions is challenging since wireless communications among vehicles is subject to harsh fading channels called ‘n*Rayleigh fading channels’, which leads to performance degradation. Therefore, in this thesis we provide a comprehensive performance analysis of cooperative transmission and MIMO systems over n*Rayleigh fading channels that help researchers for the design and implementation of V2V communication systems with lower complexity. Specifically, we first investigate the performance of cooperative IVC systems with relay selection over n*Rayleigh fading channels, assuming that both the decode-and-forward and the amplify-and-forward relaying protocols are achieved by N relays to transfer the source message to the destination. System performance is analyzed in terms of outage probability, symbol error probability, and average channel capacity. The numerical results have shown that the best relay selection approach achieves the diversity order of (d≈mN/n) where m is a cascaded Rayleigh fading parameter. Second, we investigate the performance of multihop-IVC systems with regenerative and non-regenerative relays. In this study, we derive approximate closed-form expressions for the outage probability and amount of fading when the maximum ratio combining (MRC) diversity reception is employed. Further, we analyze the power allocation for the underlying scheme in order to minimize the overall outage probability. We show that the performance of regenerative systems is better than that of non-regenerative systems when the cascading order n is low and they have similar performance when n is high. Third, we consider the problem of energy detection of unknown signals over n*Rayleigh fading channels. In this work, novel approximate expressions are derived for the average probability of detection with and without MRC diversity reception. Moreover, the system performance is analyzed when cooperative spectrum sensing (CSS) is considered under various channel constraints (e.g, perfect and imperfect reporting channels). The numerical results show that the detection reliability decreases as the cascading order n increases and substantially improves when CSS employs MRC schemes. It is demonstrated that CSS with MRC scheme keeps the probability of false alarm minimal under imperfect reporting channels rather than increasing the number of cooperative users. Finally, we present a new approach for the performance analysis of IVC systems over n*Rayleigh fading channels, using n_T transmit and n_R receive antennas to combat fading influence. In this context, we evaluate the performance of MIMO-V2V systems based on the transmit antenna selection with maximum ratio combining (TAS/MRC) and selection combining (TAS/SC) schemes. In this study, we derive tight analytical expressions for the outage probability, the symbol error probability, and the amount of fading over n*Rayleigh fading channels. It is shown that both schemes have the same maximum diversity order equivalent to (d≈mn_T n_R /n). In addition, TAS/MRC offers a better performance gain than TAS/SC scheme when the number of receive antennas is more than that of transmit antennas, but the performance improvement is limited as n increases

    Secure communication protocol design for buffer-aided relaying systems

    Get PDF
    指導教員:姜 暁

    Performance Analysis, Resource Allocation and Optimization of Cooperative Communication Systems under Generalized Fading Channels

    Get PDF
    The increasing demands for high-speed data transmission, efficient wireless access, high quality of service (QoS) and reliable network coverage with reduced power consumption impose demanding intensive research efforts on the design of novel wireless communication system architectures. A notable development in the area of communication theory is the introduction of cooperative communication systems. These technologies become promising solution for the next-generation wireless transmission systems due to their applicability in size, power, hardware and price constrained devices, such as cellular mobile devices, wireless sensors, ad-hoc networks and military communications, being able to provide, e.g., diversity gain against fading channels without the need for installing multiple antennas in a single terminal. The performance of the cooperative systems can in general be significantly increased by allocating the limited power efficiently. In this thesis, we address in detail the performance analysis, resource allocation and optimization of such cooperative communication systems under generalized fading channels. We focus first on energy-efficiency (EE) optimization and optimal power allocation (OPA) of regenerative cooperative network with spatial correlation effects under given power constraint and QoS requirement. The thesis also investigates the end-to-end performance and power allocation of a regenerative multi-relay cooperative network over non-homogeneous scattering environment, which is realistic case in practical wireless communication scenarios. Furthermore, the study investigates the end-to-end performance, OPA and energy optimization analysis under total power constraint and performance requirement of full-duplex (FD) relaying transmission scheme over asymmetric generalized fading models with relay self-interference (SI) effects.The study first focuses on exact error analysis and EE optimization of regenerative relay systems under spatial correlation effects. It first derives novel exact and asymptotic expressions for the symbol-error-rates (SERs) of M -ary quadrature amplitude and M -ary phase-shift keying (M -QAM) and (M -PSK) modulations, respectively, assuming a dual-hop decode-and-forward relay system, spatial correlation, path-loss effects and maximum-ratio-combing (MRC) at the destination. Based on this, EEoptimization and OPA are carried out under certain QoS requirement and transmit power constraints.Furthermore, the second part of the study investigates the end-to-end performance and power allocation of MRC based regenerative multi-relay cooperative system over non-homogeneous scattering environment. Novel exact and asymptotic expressions are derived for the end-to-end average SER for M -QAM and M -PSK modulations.The offered results are employed in performance investigations and power allocation formulations under total transmit power constraints.Finally, the thesis investigates outage performance, OPA and energy optimization analysis under certain system constraints for the FD and half-duplex (HD) relaying systems. Unlike the previous studies that considered the scenario of information transmission over symmetric fading conditions, in this study we considered the scenario of information transmission over the most generalized asymmetric fading environments.The obtained results indicate that depending on the severity of multipath fading, the spatial correlation between the direct and relayed paths and the relay location, the direct transmission is more energy-efficient only for rather short transmission distances and until a certain threshold. Beyond this, the system benefits substantially from the cooperative transmission approach where the cooperation gain increases as the transmission distance increases. Furthermore, the investigations on the power allocation for the multi-relay system over the generalized small-scale fading model show that substantial performance gain can be achieved by the proposed power allocation scheme over the conventional equal power allocation (EPA) scheme when the source-relay and relay-destination paths are highly unbalanced. Extensive studies on the FD relay system also show that OPA provides significant performance gain over the EPA scheme when the relay SI level is relatively strong. In addition, it is shown that the FD relaying scheme is more energy-efficient than the reference HD relaying scheme at long transmission distances and for moderate relay SI levels.In general, the investigations in this thesis provide tools, results and useful insights for implementing space-efficient, low-cost and energy-efficient cooperative networks, specifically, towards the future green communication era where the optimization of the scarce resources is critical

    Enabling Technologies for Internet of Things: Licensed and Unlicensed Techniques

    Get PDF
    The Internet of Things (IoT) is a novel paradigm which is shaping the evolution of the future Internet. According to the vision underlying the IoT, the next step in increasing the ubiquity of the Internet, after connecting people anytime and everywhere, is to connect inanimate objects. By providing objects with embedded communication capabilities and a common addressing scheme, a highly distributed and ubiquitous network of seamlessly connected heterogeneous devices is formed, which can be fully integrated into the current Internet and mobile networks, thus allowing for the development of new intelligent services available anytime, anywhere, by anyone and anything. Such a vision is also becoming known under the name of Machine-to-Machine (M2M), where the absence of human interaction in the system dynamics is further emphasized. A massive number of wireless devices will have the ability to connect to the Internat through the IoT framework. With the accelerating pace of marketing such framework, the new wireless communications standards are studying/proposing solutions to incorporate the services needed for the IoT. However, with an estimate of 30 billion connected devices, a lot of challenges are facing the current wireless technology. In our research, we address a variety of technology candidates for enabling such a massive framework. Mainly, we focus on the nderlay cognitive radio networks as the unlicensed candidate for IoT. On the other hand, we look into the current efforts done by the standardization bodies to accommodate the requirements of the IoT into the current cellular networks. Specifically, we survey the new features and the new user equipment categories added to the physical layer of the LTE-A. In particular, we study the performance of a dual-hop cognitive radio network sharing the spectrum of a primary network in an underlay fashion. In particular, the cognitive network consists of a source, a destination, and multiple nodes employed as amplify-and-forward relays. To improve the spectral efficiency, all relays are allowed to instantaneously transmit to the destination over the same frequency band. We present the optimal power allocation that maximizes the received signal-to-noise ratio (SNR) at the destination while satisfying the interference constrains of the primary network. The optimal power allocation is obtained through an eigen-solution of a channel-dependent matrix, and is shown to transform the transmission over the non-orthogonal relays into parallel channels. Furthermore, while the secondary destination is equipped with multiple antennas, we propose an antenna selection scheme to select the antenna with the highest SNR. To this end, we propose a clustering scheme to subgroup the available relays and use antenna selection at the receiver to extract the same diversity order. We show that random clustering causes the system to lose some of the available degrees of freedom. We provide analytical expression of the outage probability of the system for the random clustering and the proposed maximum-SNR clustering scheme with antenna selection. In addition, we adapt our design to increase the energy-efficiency of the overall network without significant loss in the data rate. In the second part of this thesis, we will look into the current efforts done by the standardization bodies to accommodate the equirements of the IoT into the current cellular networks. Specifically, we present the new features and the new user equipment categories added to the physical layer of the LTE-A. We study some of the challenges facing the LTE-A when dealing with Machine Type communications (MTC). Specifically, the MTC Physical Downlink control channel (MPDCCH) is among the newly introduced features in the LTE-A that carries the downlink control information (DCI) for MTC devices. Correctly decoding the PDCCH, mainly depends on the channel estimation used to compensate for the channel errors during transmission, and the choice of such technique will affect both the complexity and the performance of the user equipment. We propose and assess the performance of a simple channel estimation technique depends in essence on the Least Squares (LS) estimates of the pilots signal and linear interpolations for low-Doppler channels associated with the MTC application

    Radio Communications

    Get PDF
    In the last decades the restless evolution of information and communication technologies (ICT) brought to a deep transformation of our habits. The growth of the Internet and the advances in hardware and software implementations modified our way to communicate and to share information. In this book, an overview of the major issues faced today by researchers in the field of radio communications is given through 35 high quality chapters written by specialists working in universities and research centers all over the world. Various aspects will be deeply discussed: channel modeling, beamforming, multiple antennas, cooperative networks, opportunistic scheduling, advanced admission control, handover management, systems performance assessment, routing issues in mobility conditions, localization, web security. Advanced techniques for the radio resource management will be discussed both in single and multiple radio technologies; either in infrastructure, mesh or ad hoc networks

    Optimal Cooperative Spectrum Sensing for Cognitive Radio

    Get PDF
    The rapid increasing interest in wireless communication has led to the continuous development of wireless devices and technologies. The modern convergence and interoperability of wireless technologies has further increased the amount of services that can be provided, leading to the substantial demand for access to the radio frequency spectrum in an efficient manner. Cognitive radio (CR) an innovative concept of reusing licensed spectrum in an opportunistic manner promises to overcome the evident spectrum underutilization caused by the inflexible spectrum allocation. Spectrum sensing in an unswerving and proficient manner is essential to CR. Cooperation amongst spectrum sensing devices are vital when CR systems are experiencing deep shadowing and in a fading environment. In this thesis, cooperative spectrum sensing (CSS) schemes have been designed to optimize detection performance in an efficient and implementable manner taking into consideration: diversity performance, detection accuracy, low complexity, and reporting channel bandwidth reduction. The thesis first investigates state of the art spectrums sensing algorithms in CR. Comparative analysis and simulation results highlights the different pros, cons and performance criteria of a practical CSS scheme leading to the problem formulation of the thesis. Motivated by the problem of diversity performance in a CR network, the thesis then focuses on designing a novel relay based CSS architecture for CR. A major cooperative transmission protocol with low complexity and overhead - Amplify and Forward (AF) cooperative protocol and an improved double energy detection scheme in a single relay and multiple cognitive relay networks are designed. Simulation results demonstrated that the developed algorithm is capable of reducing the error of missed detection and improving detection probability of a primary user (PU). To improve spectrum sensing reliability while increasing agility, a CSS scheme based on evidence theory is next considered in this thesis. This focuses on a data fusion combination rule. The combination of conflicting evidences from secondary users (SUs) with the classical Dempster Shafter (DS) theory rule may produce counter-intuitive results when combining SUs sensing data leading to poor CSS performance. In order to overcome and minimise the effect of the counter-intuitive results, and to enhance performance of the CSS system, a novel state of the art evidence based decision fusion scheme is developed. The proposed approach is based on the credibility of evidence and a dissociability degree measure of the SUs sensing data evidence. Simulation results illustrate the proposed scheme improves detection performance and reduces error probability when compared to other related evidence based schemes under robust practcial scenarios. Finally, motivated by the need for a low complexity and minmum bandwidth reporting channels which can be significant in high data rate applications, novel CSS quantization schemes are proposed. Quantization methods are considered for a maximum likelihood estimation (MLE) and an evidence based CSS scheme. For the MLE based CSS, a novel uniform and optimal output entropy quantization scheme is proposed to provide fewer overhead complexities and improved throughput. While for the Evidence based CSS scheme, a scheme that quantizes the basic probability Assignment (BPA) data at each SU before being sent to the FC is designed. The proposed scheme takes into consideration the characteristics of the hypothesis distribution under diverse signal-to-noise ratio (SNR) of the PU signal based on the optimal output entropy. Simulation results demonstrate that the proposed quantization CSS scheme improves sensing performance with minimum number of quantized bits when compared to other related approaches

    Propagation measurement based study on relay networks

    Get PDF
    Von der nächsten Generation von Mobilfunksystemen erwartet man eine umfassende Versorgung mit breitbandigen Multimediadiensten. Um die dafür erforderliche flächendeckende Versorgung mit hohen Datenraten zu gewährleisten, können Relay-Netzwerke einen wesentlichen Beitrag liefern. Hierbei werden Netzwerkstationen mit Relay-Funktionalität in zellulare Netzwerke integriert. Diese Dissertation befasst sich mit der Untersuchung Relay-basierter Netzwerke unter Verwendung von Ausbreitungsmessungen. Die Arbeit deckt Fragen zur Kanalmodellierung, Systemevaluierung bis hin zur Systemverifikation ab. - Zunächst wird ein auf Funkkanalmessungen beruhendes experimentelles Kanalmodell für Relay-Netzwerke vorgestellt. Im Weiteren werden technische Verfahren für Mehrfachzugriffs-Relay-Netzwerke MARN diskutiert. Die erreichbare Systemleistung wurde unter Verwendung von Rayleigh-Kanälen innerhalb einer Systemsimulation bestimmt und im Anschluss mit realen Kanälen, die sowohl direkt aus Funkkanalmessungen als auch indirekt aus dem bereits erwähnten Kanalmodell abgeleitet wurden, verifiziert. Bisherige Arbeiten zur Modellierung breitbandiger Multiple-Input Multiple-Output (MIMO) Kanäle berücksichtigen nicht oder nur sehr stark vereinfacht die Langzeitkorrelationseigenschaften zwischen den Links und werden damit der vermaschten und räumlich weit verteilten Topologie von Relay-Netzwerken gerecht. In der vorliegenden Dissertation erfolgte daher eine experimentelle Untersuchung zu den Korrelationseigenschaften von Large-Scale-Parametern LSP, die unter Verwendung von Funkkanalmessdaten aus urbanen Umgebungen und aus Innenräumen abgeleitet wurden. Die Ergebnisse hierzu fanden Eingang in das vom WINNER-Projekt entwickelte Kanalmodell. Sie erlauben damit eine realistischere Simulation von Relay-unterstützten Netzen. Einen weiteren Schwerpunkt dieser Arbeit stellen technische Verfahren dar, die eine Erhöhung der Systemleistung in MARN mit unbekannter Interferenz UKIF versprechen. Im Einzelnen handelt es sich um die Mehrfachzugriffs-Kodierung MAC - die eine verbesserte Signaltrennung auf der Empfängerseite und eine Erhöhung des Datendurchsatzes erlaubt, den Entwurf eines Relay-Protokolls zur Erhöhung der Systemeffizienz, einen Minimum Mean Square Error (MMSE) Algorithmus zur Unterdrückung unbekannter Interferenzen bei Erhaltung der MAC-Signalstruktur mehrerer Mobilstationen MS, und ein fehlererkennungsbasiertes Signalauswahlverfahren zur Diversitätserhöhung. Die vorgenannten Verfahren werden in einer Systemsimulation zunächst mit Rayleigh-Kanälen evaluiert und demonstrieren die erzielbare theoretische Leistungssteigerung. Die Berücksichtigung realer Funkkanäle innerhalb der Systemsimulation zeigt allerdings, dass die theoretische Systemleistung so in der Realität nicht erreichbar ist. Die Ursache hierfür ist in den idealisierten Annahmen theoretischer Kanäle zu suchen. Für die Entwicklung künftiger Relay-Netzwerke bieten die in dieser Arbeit aufbereiteten Erkenntnisse hinsichtlich der Langzeitkorrelationseigenschaften zwischen den Links einen wertvollen Beitrag für die Abschätzung ihrer Systemleistung auf der Basis eines verbesserten Kanalmodells.Considering technological bases of next generation wireless systems, it is expected that systems can provide a variety of coverage requirements to support ubiquitous communications. To satisfy the requirements, an innovative idea, integrating network elements with a relaying capability into cellular networks, is one of the most promising solutions. The main topic of this dissertation is a propagation measurement based study on relay networks. The study includes three parts: channel modeling, performance evaluation, and verification. First of all, an empirical channel model for relay networks is proposed based on statistical analyses of measurement data. Then, advanced techniques for the throughput improvement and interference cancellation are proposed for Multiple Access Relay Networks (MARN) which are used as an example of relay networks. The performance of the considered MARN is evaluated for Rayleigh channels, and then verified for realistic channels, obtained from measurement data and from the experimental relay channel model as well. For relay channel modeling, the long-term correlation properties between links are of crucial importance due to the meshed-network topology. Although, there is a wide variety of research results for Multiple-Input Multiple-Output (MIMO) channel modeling available, the characterization of correlation properties has been significantly simplified or even completely ignored which motivates this research to be performed. In this dissertation, the experimental results of the correlation properties of Large Scale Parameters (LSP) are presented through the analysis on the real-field measurement data for both the urban and indoor scenarios. furthermore, the correlation properties have been fully introduced into the WINNER channel Model (WIM) for realistic relay channel simulations. As a further contribution of this dissertation, various advanced techniques are proposed for MARN in the presence of Unknown Interference (UKIF). Multiple Access Coding (MAC) is introduced as a multiple access technique. The use of MAC provides the signal separability at the receiver and improves throughput. Thereafter, high system resource efficiency can be achieved through relay protocol design. At the receiver, Minimum Mean Square Error (MMSE)-based spatial filtering is used to suppress UKIF while preserving multiple Mobile Station (MS)s’ MAC-encoded signal structure. Furthermore, an error detection aided signal selection technique is proposed for diversity increasing. The theoretical system performance with aforementioned techniques is simulated for Rayleigh channels. Thereafter, realistic channels are exploited for the performance verification. The gap between the theoretical performance and the realistic performance indicates that the assumptions made to the simplified Rayleigh-channels do not fully hold in reality. For the future relay system design, this work provides valuable information about the performance evaluation of relay networks in consideration of the correlation properties between links
    corecore