2,687 research outputs found

    A Simple Cooperative Diversity Method Based on Network Path Selection

    Full text link
    Cooperative diversity has been recently proposed as a way to form virtual antenna arrays that provide dramatic gains in slow fading wireless environments. However most of the proposed solutions require distributed space-time coding algorithms, the careful design of which is left for future investigation if there is more than one cooperative relay. We propose a novel scheme, that alleviates these problems and provides diversity gains on the order of the number of relays in the network. Our scheme first selects the best relay from a set of M available relays and then uses this best relay for cooperation between the source and the destination. We develop and analyze a distributed method to select the best relay that requires no topology information and is based on local measurements of the instantaneous channel conditions. This method also requires no explicit communication among the relays. The success (or failure) to select the best available path depends on the statistics of the wireless channel, and a methodology to evaluate performance for any kind of wireless channel statistics, is provided. Information theoretic analysis of outage probability shows that our scheme achieves the same diversity-multiplexing tradeoff as achieved by more complex protocols, where coordination and distributed space-time coding for M nodes is required, such as those proposed in [7]. The simplicity of the technique, allows for immediate implementation in existing radio hardware and its adoption could provide for improved flexibility, reliability and efficiency in future 4G wireless systems.Comment: To appear, IEEE JSAC, special issue on 4

    Resource Allocation in Wireless Networks with RF Energy Harvesting and Transfer

    Full text link
    Radio frequency (RF) energy harvesting and transfer techniques have recently become alternative methods to power the next generation of wireless networks. As this emerging technology enables proactive replenishment of wireless devices, it is advantageous in supporting applications with quality-of-service (QoS) requirement. This article focuses on the resource allocation issues in wireless networks with RF energy harvesting capability, referred to as RF energy harvesting networks (RF-EHNs). First, we present an overview of the RF-EHNs, followed by a review of a variety of issues regarding resource allocation. Then, we present a case study of designing in the receiver operation policy, which is of paramount importance in the RF-EHNs. We focus on QoS support and service differentiation, which have not been addressed by previous literatures. Furthermore, we outline some open research directions.Comment: To appear in IEEE Networ

    Expanding cellular coverage via cell-edge deployment in heterogeneous networks: spectral efficiency and backhaul power consumption perspectives

    Get PDF
    Heterogeneous small-cell networks (HetNets) are considered to be a standard part of future mobile networks where operator/consumer deployed small-cells, such as femtocells, relays, and distributed antennas (DAs), complement the existing macrocell infrastructure. This article proposes the need-oriented deployment of smallcells and device-to-device (D2D) communication around the edge of the macrocell such that the small-cell base stations (SBSs) and D2D communication serve the cell-edge mobile users, thereby expanding the network coverage and capacity. In this context, we present competitive network configurations, namely, femto-on-edge, DA-onedge, relay-on-edge, and D2D-communication on- edge, where femto base stations, DA elements, relay base stations, and D2D communication, respectively, are deployed around the edge of the macrocell. The proposed deployments ensure performance gains in the network in terms of spectral efficiency and power consumption by facilitating the cell-edge mobile users with small-cells and D2D communication. In order to calibrate the impact of power consumption on system performance and network topology, this article discusses the detailed breakdown of the end-to-end power consumption, which includes backhaul, access, and aggregation network power consumptions. Several comparative simulation results quantify the improvements in spectral efficiency and power consumption of the D2D-communication-onedge configuration to establish a greener network over the other competitive configurations

    Timing synchronization for cooperative wireless communications

    No full text
    In this work the effect of perfect and imperfect synchronization on the performance of single-link and cooperative communication is investigated. A feedforward non- data-aided near maximum likelihood (NDA-NML) timing estimator which is effective for an additive white Gaussian noise (AWGN) channel and also for a flat-fading channel, is developed. The Cramer Rao bound (CRB) and modified Cramer Rao bound (MCRB) for the estimator for a single-link transmission over an AWGN channel is derived. A closed form expression for the probability distribution of the timing estimator is also derived. The bit-error-rate (BER) degradation of the NDA-NML timing estimator with raised cosine pulse shaping for static timing errors over an AWGN channel is characterized. A closed form expression is derived for the conditional bit error probability (BEP) with static timing errors of binary phase shift keying modulation over a Rayleigh fading channel using rectangular pulse shaping. The NDA-NML timing estimator is applied to a cooperative communication system with a source, a relay and a destination. A CRB for the estimator for asymptotically low signal-to-noise-ratio case is derived. The timing complexity of the NDA-NML estimator is derived and compared with a feedforward correlation based data-aided maximum likelihood (DA-ML) estimator. The BER performance of this system operating with a detect-and-forward relaying is studied, where the symbol timings are estimated independently for each channel. A feedforward data and channel aided maximum likelihood (DCA-ML) symbol timing estimator for cooperative communication operating over flat fading channels is then developed. For more severe fading the DCA-ML estimator performs better than the NDA- NML estimator and the DA-ML estimator. The performance gains of the DCA-ML estimator over that of the DA-ML estimator become more significant in cooperative transmission than in single-link node-to-node transmission. The NDA-NML symbol timing estimator is applied to three-node cooperative communication in fast flat-fading conditions with various signal constellations. It is found that timing errors have significant effect on performance in fast flat-fading channels. The lower complexity NDA-NML estimator performs well for larger signal constellations in fast fading, when compared to DA-ML estimator. The application of cooperative techniques for saving transmit power is discussed along with the related performance analysis with timing synchronization errors. It is found that power allocations at the source and relay nodes for transmissions, and the related timing errors at the relay and the destination nodes, have considerable effect on the BER performance for power constrained cooperative communication. The performance of multi-node multi-relay decode-and-forward cooperative com- munication system, of various architectures, operating under different fading con- ditions, with timing synchronization and various combining methods, is presented. Switch-and-stay combining and switch-and-examine combining are proposed for multi-node cooperative communication. Apart from the proposed two combining methods equal gain combining, maximal ratio combining and selection combining are also used. It is demonstrated that synchronization error has significant effect on performance in cooperative communication with a range of system architectures, and it is also demonstrated that performance degradation due to synchronization error increases with increasing diversity. It is demonstrated that decode-and- forward relaying strategy with timing synchronization, using a very simple coding scheme, performs better than detect-and-forward relaying with timing synchronization. Analytical expressions are derived for BEP with static and dynamic timing synchronization errors over Rayleigh fading channels using rectangular pulse shaping for amplify-and-forward and detect-and-forward cooperative communications. Moment generating function (MGF) based approach is utilized to find the analytical expressions. It is found that timing synchronization errors have an antagonistic effect on the BEP performance of cooperative communication. With the relay intelligence of knowing whether symbols are detected correctly or not, detect- and-forward cooperative communication performs better than the low complexity amplify-and-forward cooperative communication

    H2-ARQ-relaying: spectrum and energy efficiency perspectives

    Get PDF
    In this paper, we propose novel Hybrid Automatic Repeat re-Quest (HARQ) strategies used in conjunction with hybrid relaying schemes, named as H2-ARQ-Relaying. The strategies allow the relay to dynamically switch between amplify-and-forward/compress-and-forward and decode-and-forward schemes according to its decoding status. The performance analysis is conducted from both the spectrum and energy efficiency perspectives. The spectrum efficiency of the proposed strategies, in terms of the maximum throughput, is significantly improved compared with their non-hybrid counterparts under the same constraints. The consumed energy per bit is optimized by manipulating the node activation time, the transmission energy and the power allocation between the source and the relay. The circuitry energy consumption of all involved nodes is taken into consideration. Numerical results shed light on how and when the energy efficiency can be improved in cooperative HARQ. For instance, cooperative HARQ is shown to be energy efficient in long distance transmission only. Furthermore, we consider the fact that the compress-and-forward scheme requires instantaneous signal to noise ratios of all three constituent links. However, this requirement can be impractical in some cases. In this regard, we introduce an improved strategy where only partial and affordable channel state information feedback is needed
    • …
    corecore