77 research outputs found

    Constructing IGA-suitable planar parameterization from complex CAD boundary by domain partition and global/local optimization

    Get PDF
    In this paper, we propose a general framework for constructing IGA-suitable planar B-spline parameterizations from given complex CAD boundaries consisting of a set of B-spline curves. Instead of forming the computational domain by a simple boundary, planar domains with high genus and more complex boundary curves are considered. Firstly, some pre-processing operations including B\'ezier extraction and subdivision are performed on each boundary curve in order to generate a high-quality planar parameterization; then a robust planar domain partition framework is proposed to construct high-quality patch-meshing results with few singularities from the discrete boundary formed by connecting the end points of the resulting boundary segments. After the topology information generation of quadrilateral decomposition, the optimal placement of interior B\'ezier curves corresponding to the interior edges of the quadrangulation is constructed by a global optimization method to achieve a patch-partition with high quality. Finally, after the imposition of C1=G1-continuity constraints on the interface of neighboring B\'ezier patches with respect to each quad in the quadrangulation, the high-quality B\'ezier patch parameterization is obtained by a C1-constrained local optimization method to achieve uniform and orthogonal iso-parametric structures while keeping the continuity conditions between patches. The efficiency and robustness of the proposed method are demonstrated by several examples which are compared to results obtained by the skeleton-based parameterization approach

    Analysis-suitable volume parameterization of multi-block computational domain in isogeometric applications

    Get PDF
    International audienceParameterization of computational domain is a key step in isogeometric analysis just as mesh generation is in finite element analysis. In this paper, we study the volume parameterization problem of multi-block computational domain in isogeometric version, i.e, how to generate analysis-suitable parameterization of the multi-block computational domain bounded by B-spline surfaces. Firstly, we show how to find good volume parameterization of single-block computational domain by solving a constraint optimization problem, in which the constraint condition is the injectivity sufficient conditions of B-spline volume parametrization, and the optimization term is the minimization of quadratic energy functions related to the first and second derivatives of B-spline volume parameterization. By using this method, the resulted volume parameterization has no self-intersections, and the isoparametric structure has good uniformity and orthogonality. Then we extend this method to the multi-block case, in which the continuity condition between the neighbor B-spline volume should be added to the constraint term. The effectiveness of the proposed method is illustrated by several examples based on three-dimensional heat conduction problem

    Parametric Design and Isogeometric Analysis of Tunnel Linings within the Building Information Modelling Framework

    Get PDF
    Both planning and design phase of large infrastructural project require analysis, modelling, visualization, and numerical analysis. To perform these tasks, different tools such as Building Information Modelling (BIM) and numerical analysis software are commonly employed. However, in current engineering practice, there are no systematic solutions for the exchange between design and analysis models, and these tasks usually involve manual and error-prone model generation, setup and update. In this paper, focussing on tunnelling engineering, we demonstrate a systematic and versatile approach to efficiently generate a tunnel design and analyse the lining in different practical scenarios. To this end, a BIM-based approach is developed, which connects a user-friendly industry-standard BIM software with effective simulation tools for high-performance computing. A fully automatized design-through-analysis workflow solution for segmented tunnel lining is developed based on a fully parametric design model and an isogeometric analysis software, connected through an interface implemented with a Revit plugin
    • …
    corecore