16,610 research outputs found

    Effect of a combination of enzymes on the fundamental rheological behavior of bread dough enriched with resistant starch

    Get PDF
    The effect of three enzymes on the fundamental rheological parameters of bread dough with high content of resistant starch (RS) was studied. The RS was added as an alternative to increase the fiber ingestion while the enzymes, to overcome the gluten dilution. Optimum dough was formulated with partial substitution of wheat flour by RS (12.5 g/100 g) and enzymes transglutaminase (4 mg/100 g), glucose oxidase (2.5 mg/100 g) and xylanase (0.5 mg/100 g). Dough produced with RS and without enzymes was considered as control and dough without RS or enzymes was considered as regular for comparison. Fundamental rheological parameters were obtained from uniaxial extension, biaxial extension and oscillatory tests. Also, starch gelatinization and retrogradation were studied by differential scanning calorimetry. The partial replacement of WF by RS resulted in less extensible dough, whereas the addition of enzymes increased the strain hardening index allowing higher dough expansion. The addition of enzymes reduced the elastic modulus resulting in a behavior similar to the regular dough. RS was not gelatinized during baking, hence it can be considered as dietetic fiber. Wheat starch retrogradation after 7 days of storage was observed, indicating bread aging.Fil: Altuna, Luz. Universidade de Sao Paulo; BrasilFil: Ribotta, Pablo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Ciencia y Tecnología de Alimentos Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Ciencia y Tecnología de Alimentos Córdoba; ArgentinaFil: Tadini, Carmen C.. Universidade de Sao Paulo; Brasi

    Calipso: Physics-based Image and Video Editing through CAD Model Proxies

    Get PDF
    We present Calipso, an interactive method for editing images and videos in a physically-coherent manner. Our main idea is to realize physics-based manipulations by running a full physics simulation on proxy geometries given by non-rigidly aligned CAD models. Running these simulations allows us to apply new, unseen forces to move or deform selected objects, change physical parameters such as mass or elasticity, or even add entire new objects that interact with the rest of the underlying scene. In Calipso, the user makes edits directly in 3D; these edits are processed by the simulation and then transfered to the target 2D content using shape-to-image correspondences in a photo-realistic rendering process. To align the CAD models, we introduce an efficient CAD-to-image alignment procedure that jointly minimizes for rigid and non-rigid alignment while preserving the high-level structure of the input shape. Moreover, the user can choose to exploit image flow to estimate scene motion, producing coherent physical behavior with ambient dynamics. We demonstrate Calipso's physics-based editing on a wide range of examples producing myriad physical behavior while preserving geometric and visual consistency.Comment: 11 page
    corecore