31,344 research outputs found

    Assessing Postural Stability Via the Correlation Patterns of Vertical Ground Reaction Force Components

    Get PDF
    Background Many methods have been proposed to assess the stability of human postural balance by using a force plate. While most of these approaches characterize postural stability by extracting features from the trajectory of the center of pressure (COP), this work develops stability measures derived from components of the ground reaction force (GRF). Methods In comparison with previous GRF-based approaches that extract stability features from the GRF resultant force, this study proposes three feature sets derived from the correlation patterns among the vertical GRF (VGRF) components. The first and second feature sets quantitatively assess the strength and changing speed of the correlation patterns, respectively. The third feature set is used to quantify the stabilizing effect of the GRF coordination patterns on the COP. Results In addition to experimentally demonstrating the reliability of the proposed features, the efficacy of the proposed features has also been tested by using them to classify two age groups (18–24 and 65–73 years) in quiet standing. The experimental results show that the proposed features are considerably more sensitive to aging than one of the most effective conventional COP features and two recently proposed COM features. Conclusions By extracting information from the correlation patterns of the VGRF components, this study proposes three sets of features to assess human postural stability during quiet standing. As demonstrated by the experimental results, the proposed features are not only robust to inter-trial variability but also more accurate than the tested COP and COM features in classifying the older and younger age groups. An additional advantage of the proposed approach is that it reduces the force sensing requirement from 3D to 1D, substantially reducing the cost of the force plate measurement system

    A multifactorial approach for understanding fall risk in older people

    Get PDF
    OBJECTIVE: To identify the interrelationships and discriminatory value of a broad range of objectively measured explanatory risk factors for falls. DESIGN: Prospective cohort study with 12-month follow-up period. SETTING: Community sample. PARTICIPANTS: Five hundred community-dwelling people aged 70 to 90. MEASUREMENTS: All participants underwent assessments on medical, disability, physical, cognitive, and psychological measures. Fallers were defined as people who had at least one injurious fall or at least two noninjurious falls during a 12-month follow-up period. RESULTS: Univariate regression analyses identified the following fall risk factors: disability, poor performance on physical tests, depressive symptoms, poor executive function, concern about falling, and previous falls. Classification and regression tree analysis revealed that balance-related impairments were critical predictors of falls. In those with good balance, disability and exercise levels influenced future fall risk-people in the lowest and the highest exercise tertiles were at greater risk. In those with impaired balance, different risk factors predicted greater fall risk-poor executive function, poor dynamic balance, and low exercise levels. Absolute risks for falls ranged from 11% in those with no risk factors to 54% in the highest-risk group. CONCLUSIONS: A classification and regression tree approach highlighted interrelationships and discriminatory value of important explanatory fall risk factors. The information may prove useful in clinical settings to assist in tailoring interventions to maximize the potential benefit of falls prevention strategies

    Balance Performance across the Lifespan Assessed by the Leonardo Mechanograph®: A Cross-Sectional Study

    Get PDF
    Reference values of sway parameters have not been published for the Leonardo mechanograph® so far. The aim of this cross-sectional study was to determine normative values on postural control measured by the force plate Leonardo Mechanograph® and to analyze the influence of age and sex on balance performance. A set of standardized standing positions with eyes opened (Romberg, semi-tandem, tandem, unipedal standing) was carried out. Analysis of covariance (ANCOVA) was used to detect age-and sex-related differences in center of pressure (COP) parameters (path length, velocity, elliptical area, anterior-posterior, and medio-lateral directions). Measurements were available for 570 subjects aged 20–86 years. Statistical analysis showed a high effect of age group on postural control (partial n² between 0.1 and 0.4) with a U-shaped dependency between postural control and age for all area- and path-related COP parameters, with the largest sway in the youngest (aged 20–40) and the oldest age group (aged 60–86). For velocity of COP, a linear deterioration with increasing age was found. Medio-lateral components of COP are likely to indicate the extent of postural control. Significant sex differences were not clearly supported by current findings. Age- and sex-related normative values are a useful resource for diagnostic, research, and training

    Effects of obesity on walking patterns and adaptability during obstacle crossing

    Full text link
    Obesity is a worldwide public health epidemic with no sign of yet abating. Although previous studies have examined the impact of obesity on walking, little is known about the effects of practice on walking patterns in individuals with obesity. The purpose of this current study was to evaluate whether an obstacle-crossing task may detect walking deficits in a group of adults electing to undergo bariatric surgery. With a cross-sectional design, we collected walking parameters as 24 adults (M age= 46.19, SD= 12.90) with obese body mass index (BMI) scores (M BMI= 41.68, SD= 5.80) and 26 adults (M age= 21.88, SD= 3.48) with normal BMI scores (M BMI= 23.09, SD= 4.47) walked in 5 conditions for 5 trials each: on flat ground, crossing over low, medium, and high obstacles, and again on flat ground. The timing and distance of participants' steps were collected with a mechanized gait carpet (GAITRite, Inc.). We conducted 5 (condition) repeated measures (RM) ANOVAs on our main dependent variables, which measured how fast (velocity) and long (step length) participants' steps were and how much time they spent with one (single limb support time) versus two (double limb support time) feet on the ground. The results showed within session improvements in participants' walking patterns. Comparisons of the first and last trials on flat ground showed that participants took longer, faster steps by increasing step length and velocity (ps<.01). They also spent more time with one versus two feet on the ground via increased single limb support time and decreased double limb support time (ps<.001). Our findings suggest that an obstacle-crossing task may help spur improvements in walking patterns even before adults elect to undergo bariatric surgery

    Can real-time visual feedback during gait retraining reduce metabolic demand for individuals with transtibial amputation?

    Get PDF
    The metabolic demand of walking generally increases following lower extremity amputation. This study used real-time visual feedback to modify biomechanical factors linked to an elevated metabolic demand of walking in individuals with transtibial amputation. Eight persons with unilateral, traumatic transtibial amputation and 8 uninjured controls participated. Two separate bouts of real-time visual feedback were provided during a single session of gait retraining to reduce 1) center of mass sway and 2) thigh muscle activation magnitudes and duration. Baseline and post-intervention data were collected. Metabolic rate, heart rate, frontal plane center of mass sway, quadriceps and hamstrings muscle activity, and co-contraction indices were evaluated during steady state walking at a standardized speed. Visual feedback successfully decreased center of mass sway 12% (p = 0.006) and quadriceps activity 12% (p = 0.041); however, thigh muscle co-contraction indices were unchanged. Neither condition significantly affected metabolic rate during walking and heart rate increased with center-of-mass feedback. Metabolic rate, center of mass sway, and integrated quadriceps muscle activity were all not significantly different from controls. Attempts to modify gait to decrease metabolic demand may actually adversely increase the physiological effort of walking in individuals with lower extremity amputation who are young, active and approximate metabolic rates of able-bodied adults

    Long-term Follow up of Van Nes Rotationplasty for Congenital Proximal Focal Femoral Deficiency

    Get PDF
    Van Nes rotationplasty may be used for patients with congenital proximal focal femoral deficiency (PFFD). The lower limb is rotated to use the ankle and foot as a functional knee joint within a prosthesis. A small series of cases was investigated to determine the long-term outcome. At a mean of 21.5 years (11 to 45) after their rotationplasty, a total of 12 prosthetic patients completed the Short-Form (SF)-36, Faces Pain Scale-Revised, Harris hip score, Oswestry back pain score and Prosthetic Evaluation Questionnaires, as did 12 age- and gender-matched normal control participants. A physical examination and gait analysis, computerised dynamic posturography (CDP), and timed ‘Up & Go’ testing was also completed. Wilcoxon Signed rank test was used to compare each PFFD patient with a matched control participant with false discovery rate of 5%. There were no differences between the groups in overall health and well-being on the SF-36. Significant differences were seen in gait parameters in the PFFD group. Using CDP, the PFFD group had reduced symmetry in stance, and reduced end point and maximum excursions. Patients who had undergone Van Nes rotationplasty had a high level of function and quality of life at long-term follow-up, but presented with significant differences in gait and posture compared with the control group

    A Wii Bit of Fun: A Novel Platform to Deliver Effective Balance Training to Older Adults

    Get PDF
    BACKGROUND: Falls and fall-related injuries are symptomatic of an aging population. This study aimed to design, develop, and deliver a novel method of balance training, using an interactive game-based system to promote engagement, with the inclusion of older adults at both high and low risk of experiencing a fall.STUDY DESIGN: Eighty-two older adults (65 years of age and older) were recruited from sheltered accommodation and local activity groups. Forty volunteers were randomly selected and received 5 weeks of balance game training (5 males, 35 females; mean, 77.18 ± 6.59 years), whereas the remaining control participants recorded levels of physical activity (20 males, 22 females; mean, 76.62 ± 7.28 years). The effect of balance game training was measured on levels of functional balance and balance confidence in individuals with and without quantifiable balance impairments.RESULTS: Balance game training had a significant effect on levels of functional balance and balance confidence (P Peer reviewedFinal Published versio
    • …
    corecore