1,372 research outputs found

    Hybrid approaches based on computational intelligence and semantic web for distributed situation and context awareness

    Get PDF
    2011 - 2012The research work focuses on Situation Awareness and Context Awareness topics. Specifically, Situation Awareness involves being aware of what is happening in the vicinity to understand how information, events, and one’s own actions will impact goals and objectives, both immediately and in the near future. Thus, Situation Awareness is especially important in application domains where the information flow can be quite high and poor decisions making may lead to serious consequences. On the other hand Context Awareness is considered a process to support user applications to adapt interfaces, tailor the set of application-relevant data, increase the precision of information retrieval, discover services, make the user interaction implicit, or build smart environments. Despite being slightly different, Situation and Context Awareness involve common problems such as: the lack of a support for the acquisition and aggregation of dynamic environmental information from the field (i.e. sensors, cameras, etc.); the lack of formal approaches to knowledge representation (i.e. contexts, concepts, relations, situations, etc.) and processing (reasoning, classification, retrieval, discovery, etc.); the lack of automated and distributed systems, with considerable computing power, to support the reasoning on a huge quantity of knowledge, extracted by sensor data. So, the thesis researches new approaches for distributed Context and Situation Awareness and proposes to apply them in order to achieve some related research objectives such as knowledge representation, semantic reasoning, pattern recognition and information retrieval. The research work starts from the study and analysis of state of art in terms of techniques, technologies, tools and systems to support Context/Situation Awareness. The main aim is to develop a new contribution in this field by integrating techniques deriving from the fields of Semantic Web, Soft Computing and Computational Intelligence. From an architectural point of view, several frameworks are going to be defined according to the multi-agent paradigm. Furthermore, some preliminary experimental results have been obtained in some application domains such as Airport Security, Traffic Management, Smart Grids and Healthcare. Finally, future challenges is going to the following directions: Semantic Modeling of Fuzzy Control, Temporal Issues, Automatically Ontology Elicitation, Extension to other Application Domains and More Experiments. [edited by author]XI n.s

    The Semantic Shadow : Combining User Interaction with Context Information for Semantic Web-Site Annotation

    Get PDF
    This thesis develops the concept of the Semantic Shadow (SemS), a model for managing contentual and structural annotations on web page elements and their values. The model supports a contextual weighting of the annotated information, allowing to specify the annotation values in relation to the evaluation context. A procedure is presented, which allows to manage and process this context-dependent meta information on web page elements using a dedicated programming interface. Two distinct implementations for the model have been developed: One based on Java objects, the other using the Resource Description Framework (RDF) as modeling backend. This RDF-based storage allows to integrate the annotations of the Semantic Shadow with other information of the Semantic Web. To demonstrate the application of the Semantic Shadow concept, a procedure to optimize web based user interfaces based on the structural semantics has been developed: Assuming a mobile client, a requested web page is dynamically adapted by a proxy prototype, where the context-awareness of the adaptation can be directly modeled alongside with the structural annotations. To overcome the drawback of missing annotations for existing web pages, this thesis introduces a concept to derive context-dependent meta-information on the web pages from their usage: From the observation of the users' interaction with a web page, certain context-dependent structural information about the concerned web page elements can be derived and stored in the annotation model of the Semantic Shadow concept.In dieser Arbeit wird das Konzept des Semantic Shadow (dt. Semantischer Schatten) entwickelt, ein Programmier-Modell um Webseiten-Elemente mit inhaltsbezogenen und strukturellen Anmerkungen zu versehen. Das Modell unterstützt dabei eine kontextabhängige Gewichtung der Anmerkungen, so dass eine Anmerkung in Bezug zum Auswertungs-Kontext gesetzt werden kann. Zur Verwaltung und Verarbeitung dieser kontextbezogenen Meta-Informationen für Webseiten-Elemente wurde im Rahmen der Arbeit eine Programmierschnittstelle definiert. Dazu wurden zwei Implementierungen der Schnittstelle entwickelt: Eine basiert ausschließlich auf Java-Objekten, die andere baut auf einem RDF-Modell auf. Die RDF-basierte Persistierung erlaubt eine Integration der Semantic-Shadow-Anmerkungen mit anderen Anwendungen des Semantic Webs. Um die Anwendungsmöglichkeiten des Semantic-Shadow-Konzepts darzustellen, wurde eine Vorgehensweise zur Optimierung von webbasierten Benutzerschnittstellen auf Grundlage von semantischen Strukturinformationen entwickelt: Wenn ein mobiler Benutzer eine Webseite anfordert, wird diese dynamisch durch einen Proxy angepasst. Die Kontextabhängigkeit dieser Anpassung wird dabei bereits direkt mit den Struktur-Anmerkungen modelliert. Für bestehende Webseiten liegen zumeist keine Annotationen vor. Daher wird in dieser Arbeit ein Konzept vorgestellt, kontextabhängige Meta-Informationen aus der Benutzung der Webseiten zu bestimmen: Durch Beobachtung der Benutzer-Interaktionen mit den Webseiten-Elementen ist es möglich bestimmte kontextabhängige Strukturinformationen abzuleiten und als Anmerkungen im Modell des Semantic-Shadow-Konzepts zu persistieren

    SWARMs Ontology: A Common Information Model for the Cooperation of Underwater Robots

    Get PDF
    In order to facilitate cooperation between underwater robots, it is a must for robots to exchange information with unambiguous meaning. However, heterogeneity, existing in information pertaining to different robots, is a major obstruction. Therefore, this paper presents a networked ontology, named the Smart and Networking Underwater Robots in Cooperation Meshes (SWARMs) ontology, to address information heterogeneity and enable robots to have the same understanding of exchanged information. The SWARMs ontology uses a core ontology to interrelate a set of domain-specific ontologies, including the mission and planning, the robotic vehicle, the communication and networking, and the environment recognition and sensing ontology. In addition, the SWARMs ontology utilizes ontology constructs defined in the PR-OWL ontology to annotate context uncertainty based on the Multi-Entity Bayesian Network (MEBN) theory. Thus, the SWARMs ontology can provide both a formal specification for information that is necessarily exchanged between robots and a command and control entity, and also support for uncertainty reasoning. A scenario on chemical pollution monitoring is described and used to showcase how the SWARMs ontology can be instantiated, be extended, represent context uncertainty, and support uncertainty reasoning.Eurpean Commission, H2020, 66210

    Situation Interpretation for Knowledge- and Model Based Laparoscopic Surgery

    Get PDF
    To manage the influx of information into surgical practice, new man-machine interaction methods are necessary to prevent information overflow. This work presents an approach to automatically segment surgeries into phases and select the most appropriate pieces of information for the current situation. This way, assistance systems can adopt themselves to the needs of the surgeon and not the other way around

    Ontology-based Fuzzy Markup Language Agent for Student and Robot Co-Learning

    Full text link
    An intelligent robot agent based on domain ontology, machine learning mechanism, and Fuzzy Markup Language (FML) for students and robot co-learning is presented in this paper. The machine-human co-learning model is established to help various students learn the mathematical concepts based on their learning ability and performance. Meanwhile, the robot acts as a teacher's assistant to co-learn with children in the class. The FML-based knowledge base and rule base are embedded in the robot so that the teachers can get feedback from the robot on whether students make progress or not. Next, we inferred students' learning performance based on learning content's difficulty and students' ability, concentration level, as well as teamwork sprit in the class. Experimental results show that learning with the robot is helpful for disadvantaged and below-basic children. Moreover, the accuracy of the intelligent FML-based agent for student learning is increased after machine learning mechanism.Comment: This paper is submitted to IEEE WCCI 2018 Conference for revie

    AI Solutions for MDS: Artificial Intelligence Techniques for Misuse Detection and Localisation in Telecommunication Environments

    Get PDF
    This report considers the application of Articial Intelligence (AI) techniques to the problem of misuse detection and misuse localisation within telecommunications environments. A broad survey of techniques is provided, that covers inter alia rule based systems, model-based systems, case based reasoning, pattern matching, clustering and feature extraction, articial neural networks, genetic algorithms, arti cial immune systems, agent based systems, data mining and a variety of hybrid approaches. The report then considers the central issue of event correlation, that is at the heart of many misuse detection and localisation systems. The notion of being able to infer misuse by the correlation of individual temporally distributed events within a multiple data stream environment is explored, and a range of techniques, covering model based approaches, `programmed' AI and machine learning paradigms. It is found that, in general, correlation is best achieved via rule based approaches, but that these suffer from a number of drawbacks, such as the difculty of developing and maintaining an appropriate knowledge base, and the lack of ability to generalise from known misuses to new unseen misuses. Two distinct approaches are evident. One attempts to encode knowledge of known misuses, typically within rules, and use this to screen events. This approach cannot generally detect misuses for which it has not been programmed, i.e. it is prone to issuing false negatives. The other attempts to `learn' the features of event patterns that constitute normal behaviour, and, by observing patterns that do not match expected behaviour, detect when a misuse has occurred. This approach is prone to issuing false positives, i.e. inferring misuse from innocent patterns of behaviour that the system was not trained to recognise. Contemporary approaches are seen to favour hybridisation, often combining detection or localisation mechanisms for both abnormal and normal behaviour, the former to capture known cases of misuse, the latter to capture unknown cases. In some systems, these mechanisms even work together to update each other to increase detection rates and lower false positive rates. It is concluded that hybridisation offers the most promising future direction, but that a rule or state based component is likely to remain, being the most natural approach to the correlation of complex events. The challenge, then, is to mitigate the weaknesses of canonical programmed systems such that learning, generalisation and adaptation are more readily facilitated

    Context-aware Approach for Determining the Threshold Price in Name-Your-Own-Price Channels

    Get PDF
    Key feature of a context-aware application is the ability to adapt based on the change of context. Two approaches that are widely used in this regard are the context-action pair mapping where developers match an action to execute for a particular context change and the adaptive learning where a context-aware application refines its action over time based on the preceding action’s outcome. Both these approaches have limitation which makes them unsuitable in situations where a context-aware application has to deal with unknown context changes. In this paper we propose a framework where adaptation is carried out via concurrent multi-action evaluation of a dynamically created action space. This dynamic creation of the action space eliminates the need for relying on the developers to create context-action pairs and the concurrent multi-action evaluation reduces the adaptation time as opposed to the iterative approach used by adaptive learning techniques. Using our reference implementation of the framework we show how it could be used to dynamically determine the threshold price in an e-commerce system which uses the name-your-own-price (NYOP) strategy

    Internet of robotic things : converging sensing/actuating, hypoconnectivity, artificial intelligence and IoT Platforms

    Get PDF
    The Internet of Things (IoT) concept is evolving rapidly and influencing newdevelopments in various application domains, such as the Internet of MobileThings (IoMT), Autonomous Internet of Things (A-IoT), Autonomous Systemof Things (ASoT), Internet of Autonomous Things (IoAT), Internetof Things Clouds (IoT-C) and the Internet of Robotic Things (IoRT) etc.that are progressing/advancing by using IoT technology. The IoT influencerepresents new development and deployment challenges in different areassuch as seamless platform integration, context based cognitive network integration,new mobile sensor/actuator network paradigms, things identification(addressing, naming in IoT) and dynamic things discoverability and manyothers. The IoRT represents new convergence challenges and their need to be addressed, in one side the programmability and the communication ofmultiple heterogeneous mobile/autonomous/robotic things for cooperating,their coordination, configuration, exchange of information, security, safetyand protection. Developments in IoT heterogeneous parallel processing/communication and dynamic systems based on parallelism and concurrencyrequire new ideas for integrating the intelligent “devices”, collaborativerobots (COBOTS), into IoT applications. Dynamic maintainability, selfhealing,self-repair of resources, changing resource state, (re-) configurationand context based IoT systems for service implementation and integrationwith IoT network service composition are of paramount importance whennew “cognitive devices” are becoming active participants in IoT applications.This chapter aims to be an overview of the IoRT concept, technologies,architectures and applications and to provide a comprehensive coverage offuture challenges, developments and applications
    • …
    corecore