286 research outputs found

    Adaptive autotuning mathematical approaches for integrated optimization of automated container terminal

    Get PDF
    With the development of automated container terminals (ACTs), reducing the loading and unloading time of operation and improving the working efficiency and service level have become the key point. Taking into account the actual operation mode of loading and unloading in ACTs, a mixed integer programming model is adopted in this study to minimize the loading and unloading time of ships, which can optimize the integrated scheduling of the gantry cranes (QCs), automated guided vehicles (AGVs), and automated rail-mounted gantries (ARMGs) in automated terminals. Various basic metaheuristic and improved hybrid algorithms were developed to optimize the model, proving the effectiveness of the model to obtain an optimized scheduling scheme by numerical experiments and comparing the different performances of algorithms. The results show that the hybrid GA-PSO algorithm with adaptive autotuning approaches by fuzzy control is superior to other algorithms in terms of solution time and quality, which can effectively solve the problem of integrated scheduling of automated container terminals to improve efficiency.info:eu-repo/semantics/publishedVersio

    Nature Inspired Metaheuristics for Optimizing Problems at a Container Terminal

    Get PDF
    Nowadays, maritime transport is the backbone of the international trade of goods. Therefore, seaports play a very important role in global transport. The use of containers is significantly represented in the maritime transport. Considering the increased number of container shipments in the global transport, seaport container terminals have to be adapted to a new situation and provide the best possible service of container transfer by reducing the transfer cost and the container transit time. Therefore, there is a need for optimization of the whole container transport process within the terminal. The logistic problems of the container terminals have become very complex and logistics experts cannot manually adjust the operations of terminal processes that will optimize the usage of resources. Hence, to achieve further improvements of terminal logistics, there is a need to introduce scientific methods such as metaheuristics that will enable better and optimized use of the terminal resources in an automated way. There is a large number of research papers that have successfully proposed the solutions of optimizing the container logistic problems with well-known metaheuristics inspired by the nature. However, there is a continuous emergence of new nature inspired metaheuristics today, like artificial bee colony algorithm, firefly algorithm and bat algorithm, that outperform the well-known metaheuristics considering the most popular optimization problems like travel salesman problem. Considering these results of comparing algorithms, we assume that better results of optimization of container terminal logistic problems can be achieved by introducing these new nature inspired metaheuristics. In this paper we have described and classified the main subsystems of the container terminal and its logistic problems that need to be optimized. We have also presented a review of new nature inspired metaheuristics (bee, firefly and bat algorithm) that could be used in the optimization of these problems within the terminal

    An Improved Discrete PSO for Tugboat Assignment Problem under a Hybrid Scheduling Rule in Container Terminal

    Get PDF
    In container terminal, tugboat plays vital role in safety of ship docking. Tugboat assignment problem under a hybrid scheduling rule (TAP-HSR) is to determine the assignment between multiple tugboats and ships and the scheduling sequence of ships to minimize the turnaround time of ships. A mixed-integer programming model and the scheduling method are described for TAP-HSR problem. Then an improved discrete PSO (IDPSO) algorithm for TAP-HSR problem is proposed to minimize the turnaround time of ships. In particular, some new redefined PSO operators and the discrete updating rules of position and velocity are developed. The experimental results show that the proposed IDPSO can get better solutions than GA and basic discrete PSO

    Sequence-Based Simulation-Optimization Framework With Application to Port Operations at Multimodal Container Terminals

    Get PDF
    It is evident in previous works that operations research and mathematical algorithms can provide optimal or near-optimal solutions, whereas simulation models can aid in predicting and studying the behavior of systems over time and monitor performance under stochastic and uncertain circumstances. Given the intensive computational effort that simulation optimization methods impose, especially for large and complex systems like container terminals, a favorable approach is to reduce the search space to decrease the amount of computation. A maritime port can consist of multiple terminals with specific functionalities and specialized equipment. A container terminal is one of several facilities in a port that involves numerous resources and entities. It is also where containers are stored and transported, making the container terminal a complex system. Problems such as berth allocation, quay and yard crane scheduling and assignment, storage yard layout configuration, container re-handling, customs and security, and risk analysis become particularly challenging. Discrete-event simulation (DES) models are typically developed for complex and stochastic systems such as container terminals to study their behavior under different scenarios and circumstances. Simulation-optimization methods have emerged as an approach to find optimal values for input variables that maximize certain output metric(s) of the simulation. Various traditional and nontraditional approaches of simulation-optimization continue to be used to aid in decision making. In this dissertation, a novel framework for simulation-optimization is developed, implemented, and validated to study the influence of using a sequence (ordering) of decision variables (resource levels) for simulation-based optimization in resource allocation problems. This approach aims to reduce the computational effort of optimizing large simulations by breaking the simulation-optimization problem into stages. Since container terminals are complex stochastic systems consisting of different areas with detailed and critical functions that may affect the output, a platform that accurately simulates such a system can be of significant analytical benefit. To implement and validate the developed framework, a large-scale complex container terminal discrete-event simulation model was developed and validated based on a real system and then used as a testing platform for various hypothesized algorithms studied in this work

    The synergistic effect of operational research and big data analytics in greening container terminal operations: a review and future directions

    Get PDF
    Container Terminals (CTs) are continuously presented with highly interrelated, complex, and uncertain planning tasks. The ever-increasing intensity of operations at CTs in recent years has also resulted in increasing environmental concerns, and they are experiencing an unprecedented pressure to lower their emissions. Operational Research (OR), as a key player in the optimisation of the complex decision problems that arise from the quay and land side operations at CTs, has been therefore presented with new challenges and opportunities to incorporate environmental considerations into decision making and better utilise the ‘big data’ that is continuously generated from the never-stopping operations at CTs. The state-of-the-art literature on OR's incorporation of environmental considerations and its interplay with Big Data Analytics (BDA) is, however, still very much underdeveloped, fragmented, and divergent, and a guiding framework is completely missing. This paper presents a review of the most relevant developments in the field and sheds light on promising research opportunities for the better exploitation of the synergistic effect of the two disciplines in addressing CT operational problems, while incorporating uncertainty and environmental concerns efficiently. The paper finds that while OR has thus far contributed to improving the environmental performance of CTs (rather implicitly), this can be much further stepped up with more explicit incorporation of environmental considerations and better exploitation of BDA predictive modelling capabilities. New interdisciplinary research at the intersection of conventional CT optimisation problems, energy management and sizing, and net-zero technology and energy vectors adoption is also presented as a prominent line of future research

    Optimization and Robustness in Planning and Scheduling Problems. Application to Container Terminals

    Full text link
    Tesis por compendioDespite the continuous evolution in computers and information technology, real-world combinatorial optimization problems are NP-problems, in particular in the domain of planning and scheduling. Thus, although exact techniques from the Operations Research (OR) field, such as Linear Programming, could be applied to solve optimization problems, they are difficult to apply in real-world scenarios since they usually require too much computational time, i.e: an optimized solution is required at an affordable computational time. Furthermore, decision makers often face different and typically opposing goals, then resulting multi-objective optimization problems. Therefore, approximate techniques from the Artificial Intelligence (AI) field are commonly used to solve the real world problems. The AI techniques provide richer and more flexible representations of real-world (Gomes 2000), and they are widely used to solve these type of problems. AI heuristic techniques do not guarantee the optimal solution, but they provide near-optimal solutions in a reasonable time. These techniques are divided into two broad classes of algorithms: constructive and local search methods (Aarts and Lenstra 2003). They can guide their search processes by means of heuristics or metaheuristics depending on how they escape from local optima (Blum and Roli 2003). Regarding multi-objective optimization problems, the use of AI techniques becomes paramount due to their complexity (Coello Coello 2006). Nowadays, the point of view for planning and scheduling tasks has changed. Due to the fact that real world is uncertain, imprecise and non-deterministic, there might be unknown information, breakdowns, incidences or changes, which become the initial plans or schedules invalid. Thus, there is a new trend to cope these aspects in the optimization techniques, and to seek robust solutions (schedules) (Lambrechts, Demeulemeester, and Herroelen 2008). In this way, these optimization problems become harder since a new objective function (robustness measure) must be taken into account during the solution search. Therefore, the robustness concept is being studied and a general robustness measure has been developed for any scheduling problem (such as Job Shop Problem, Open Shop Problem, Railway Scheduling or Vehicle Routing Problem). To this end, in this thesis, some techniques have been developed to improve the search of optimized and robust solutions in planning and scheduling problems. These techniques offer assistance to decision makers to help in planning and scheduling tasks, determine the consequences of changes, provide support in the resolution of incidents, provide alternative plans, etc. As a case study to evaluate the behaviour of the techniques developed, this thesis focuses on problems related to container terminals. Container terminals generally serve as a transshipment zone between ships and land vehicles (trains or trucks). In (Henesey 2006a), it is shown how this transshipment market has grown rapidly. Container terminals are open systems with three distinguishable areas: the berth area, the storage yard, and the terminal receipt and delivery gate area. Each one presents different planning and scheduling problems to be optimized (Stahlbock and Voß 2008). For example, berth allocation, quay crane assignment, stowage planning, and quay crane scheduling must be managed in the berthing area; the container stacking problem, yard crane scheduling, and horizontal transport operations must be carried out in the yard area; and the hinterland operations must be solved in the landside area. Furthermore, dynamism is also present in container terminals. The tasks of the container terminals take place in an environment susceptible of breakdowns or incidences. For instance, a Quay Crane engine stopped working and needs to be revised, delaying this task one or two hours. Thereby, the robustness concept can be included in the scheduling techniques to take into consideration some incidences and return a set of robust schedules. In this thesis, we have developed a new domain-dependent planner to obtain more effi- cient solutions in the generic problem of reshuffles of containers. Planning heuristics and optimization criteria developed have been evaluated on realistic problems and they are applicable to the general problem of reshuffling in blocks world scenarios. Additionally, we have developed a scheduling model, using constructive metaheuristic techniques on a complex problem that combines sequences of scenarios with different types of resources (Berth Allocation, Quay Crane Assignment, and Container Stacking problems). These problems are usually solved separately and their integration allows more optimized solutions. Moreover, in order to address the impact and changes that arise in dynamic real-world environments, a robustness model has been developed for scheduling tasks. This model has been applied to metaheuristic schemes, which are based on genetic algorithms. The extension of such schemes, incorporating the robustness model developed, allows us to evaluate and obtain more robust solutions. This approach, combined with the classical optimality criterion in scheduling problems, allows us to obtain, in an efficient in way, optimized solution able to withstand a greater degree of incidents that occur in dynamic scenarios. Thus, a proactive approach is applied to the problem that arises with the presence of incidences and changes that occur in typical scheduling problems of a dynamic real world.Rodríguez Molins, M. (2015). Optimization and Robustness in Planning and Scheduling Problems. Application to Container Terminals [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/48545TESISCompendi

    Simulation-optimization models for the dynamic berth allocation problem

    Get PDF
    Container terminals are designed to provide support for the continuous changes in container ships. The most common schemes used for dock management are based on discrete and continuous locations. In view of the steadily growing trend in increasing container ship size, more flexible berth allocation planning is mandatory. The consideration of continuous location in the container terminal is a good option. This paper addresses the berth allocation problem with continuous dock, which is called dynamic berth allocation problem (DBAP). We propose a mathematical model and develop a heuristic procedure, based on a genetic algorithm, to solve the corresponding mixed integer problem. Allocation planning aims to minimise distances travelled by the forklifts and the quay crane, for container loading and unloading operations for each ship, according to the quay crane scheduling. Simulations are undertaken using Arena software, and experimental analysis is carried out for the most important container terminal in Spain

    New Algorithm for Fast Processing RFID System in Container Terminal

    Get PDF
    The growth of world economic and increasing of trading in most of countries has impact to the number of containers export and import between countries. Some of container terminal is very busy to handle high volume of container movement. Conventional operational procedures have difficulties to handle containers movement then make slow and some issues in terminal operation for container clearance. This paper discus on proposing new algorithm to the current container terminal management system used RFID technology for fast processing and clearance. Container Terminal Management System (CTMS) is a system for port management and interface to the RFID system that used to identify container e-seal, truck and driver identity. Lack of communication and interfacing protocol made slow response during request or reply of message to the gate operator. Proposed algorithm with new procedure of request to CTMS made faster response and avoid inaccuracy of detecting container e-seal. Results of implementation new algorithm have improved to the productivity and efficiency of container terminal. Testing and implementation of this proposed system conducted in a private container terminal in Malaysia

    Discrete-Event Control and Optimization of Container Terminal Operations

    Get PDF
    This thesis discusses the dynamical modeling of complex container terminal operations. In the current literature, the systems are usually modeled in static way using linear programming techniques. This setting does not completely capture the dynamic aspects in the operations, where information about external factors such as ships and trucks arrivals or departures and also the availability of terminal's equipment can always change. We propose dynamical modeling of container terminal operations using discrete-event systems (DES) modeling framework. The basic framework in this thesis is the DES modeling for berth and quay crane allocation problem (BCAP) where the systems are not only dynamic, but also asynchronous. We propose a novel berth and QC allocation method, namely the model predictive allocation (MPA) which is based on model predictive control principle and rolling horizon implementation. The DES models with asynchronous event transition is mathematically analyzed to show the efficacy of our method. We study an optimal input allocation problem for a class of discrete-event systems with dynamic input sequence (DESDIS). We show that in particular, the control input can be obtained by the minimization/maximization of the present input sequence only. We have shown that the proposed approach performed better than the existing method used in the studied terminal and state-of-the-art methods in the literature
    corecore