33 research outputs found

    Artificial Collective Intelligence Engineering: a Survey of Concepts and Perspectives

    Full text link
    Collectiveness is an important property of many systems--both natural and artificial. By exploiting a large number of individuals, it is often possible to produce effects that go far beyond the capabilities of the smartest individuals, or even to produce intelligent collective behaviour out of not-so-intelligent individuals. Indeed, collective intelligence, namely the capability of a group to act collectively in a seemingly intelligent way, is increasingly often a design goal of engineered computational systems--motivated by recent techno-scientific trends like the Internet of Things, swarm robotics, and crowd computing, just to name a few. For several years, the collective intelligence observed in natural and artificial systems has served as a source of inspiration for engineering ideas, models, and mechanisms. Today, artificial and computational collective intelligence are recognised research topics, spanning various techniques, kinds of target systems, and application domains. However, there is still a lot of fragmentation in the research panorama of the topic within computer science, and the verticality of most communities and contributions makes it difficult to extract the core underlying ideas and frames of reference. The challenge is to identify, place in a common structure, and ultimately connect the different areas and methods addressing intelligent collectives. To address this gap, this paper considers a set of broad scoping questions providing a map of collective intelligence research, mostly by the point of view of computer scientists and engineers. Accordingly, it covers preliminary notions, fundamental concepts, and the main research perspectives, identifying opportunities and challenges for researchers on artificial and computational collective intelligence engineering.Comment: This is the author's final version of the article, accepted for publication in the Artificial Life journal. Data: 34 pages, 2 figure

    LIPIcs, Volume 277, GIScience 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 277, GIScience 2023, Complete Volum

    12th International Conference on Geographic Information Science: GIScience 2023, September 12–15, 2023, Leeds, UK

    Get PDF
    No abstract available

    Advances in the Field of Electrical Machines and Drives

    Get PDF
    Electrical machines and drives dominate our everyday lives. This is due to their numerous applications in industry, power production, home appliances, and transportation systems such as electric and hybrid electric vehicles, ships, and aircrafts. Their development follows rapid advances in science, engineering, and technology. Researchers around the world are extensively investigating electrical machines and drives because of their reliability, efficiency, performance, and fault-tolerant structure. In particular, there is a focus on the importance of utilizing these new trends in technology for energy saving and reducing greenhouse gas emissions. This Special Issue will provide the platform for researchers to present their recent work on advances in the field of electrical machines and drives, including special machines and their applications; new materials, including the insulation of electrical machines; new trends in diagnostics and condition monitoring; power electronics, control schemes, and algorithms for electrical drives; new topologies; and innovative applications

    An Approach Based on Particle Swarm Optimization for Inspection of Spacecraft Hulls by a Swarm of Miniaturized Robots

    Get PDF
    The remoteness and hazards that are inherent to the operating environments of space infrastructures promote their need for automated robotic inspection. In particular, micrometeoroid and orbital debris impact and structural fatigue are common sources of damage to spacecraft hulls. Vibration sensing has been used to detect structural damage in spacecraft hulls as well as in structural health monitoring practices in industry by deploying static sensors. In this paper, we propose using a swarm of miniaturized vibration-sensing mobile robots realizing a network of mobile sensors. We present a distributed inspection algorithm based on the bio-inspired particle swarm optimization and evolutionary algorithm niching techniques to deliver the task of enumeration and localization of an a priori unknown number of vibration sources on a simplified 2.5D spacecraft surface. Our algorithm is deployed on a swarm of simulated cm-scale wheeled robots. These are guided in their inspection task by sensing vibrations arising from failure points on the surface which are detected by on-board accelerometers. We study three performance metrics: (1) proximity of the localized sources to the ground truth locations, (2) time to localize each source, and (3) time to finish the inspection task given a 75% inspection coverage threshold. We find that our swarm is able to successfully localize the present so

    Economic and Policy Challenges of the Energy Transition in CEE Countries

    Get PDF
    With the announcement of the European Green Deal, which defines a set of policy initiatives aimed at achieving a 50–55% reduction in carbon emissions by 2030 and making Europe climate neutral in 2050, the challenge of energy transition becomes even more critical. The transformation of national energy systems towards sustainability is progressing throughout all Central and Eastern European (CEE) countries, yet the goals and results are different. Most EU Member States have made substantial progress towards meeting their long-term commitments of emissions reductions. However, some bloc members have struggled to meet their obligations. An effective energy transition requires the introduction of appropriately designed policy instruments and of robust economic analyses that ensure the best possible outcomes at the lowest costs for society. In this context, this Special Issue aims to bring into the discussion the challenges that CEE countries have to face and overcome while undergoing energy transition

    Computer Aided Verification

    Get PDF
    This open access two-volume set LNCS 10980 and 10981 constitutes the refereed proceedings of the 30th International Conference on Computer Aided Verification, CAV 2018, held in Oxford, UK, in July 2018. The 52 full and 13 tool papers presented together with 3 invited papers and 2 tutorials were carefully reviewed and selected from 215 submissions. The papers cover a wide range of topics and techniques, from algorithmic and logical foundations of verification to practical applications in distributed, networked, cyber-physical, and autonomous systems. They are organized in topical sections on model checking, program analysis using polyhedra, synthesis, learning, runtime verification, hybrid and timed systems, tools, probabilistic systems, static analysis, theory and security, SAT, SMT and decisions procedures, concurrency, and CPS, hardware, industrial applications

    Strategic Latency Unleashed: The Role of Technology in a Revisionist Global Order and the Implications for Special Operations Forces

    Get PDF
    The article of record may be found at https://cgsr.llnl.govThis work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory in part under Contract W-7405-Eng-48 and in part under Contract DE-AC52-07NA27344. The views and opinions of the author expressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National Security, LLC. ISBN-978-1-952565-07-6 LCCN-2021901137 LLNL-BOOK-818513 TID-59693This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory in part under Contract W-7405-Eng-48 and in part under Contract DE-AC52-07NA27344. The views and opinions of the author expressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National Security, LLC. ISBN-978-1-952565-07-6 LCCN-2021901137 LLNL-BOOK-818513 TID-5969

    Fluid approximation of broadcasting systems

    Get PDF
    Nature-inspired paradigms have been proposed to design and forecast behaviour of open distributed systems, such as sensor networks and the internet of things. In these paradigms system behaviour emerges from (complex) interactions among a large number of agents. Modelling these interactions in terms of classical point-to-point communication is often not practical. This is due to the large scale and the open nature of the systems, which means that partners for point-to-point communication may not be available at any given time. Nevertheless the need for efficient formal verification of qualitative and quantitative properties of these systems is of utmost importance, especially given their proposed pervasive and transparent nature. CARMA is a recently proposed formal modelling language for open distributed systems, which is equipped with a broadcast communication in order to meet the communication challenges of such systems. The inclusion of quantitative information about the timing and probability of actions gives rise to models suitable for analysing questions such as the probability that information will achieve total coverage within a system, or the expected market share that might be gained by competing service providers relying on viral advertising. The ability to express models is not the only challenge, because the scale of the systems we are interested in often defies discrete state-based analysis techniques such as stochastic simulation. This is the problem that we address in this paper as we consider how to provide an efficient fluid approximation, supporting efficient and accurate quantitative analysis of large scale systems, for a language that incorporates broadcast communication
    corecore