747 research outputs found

    EGFAFS:A Novel Feature Selection Algorithm Based on Explosion Gravitation Field Algorithm

    Get PDF
    Feature selection (FS) is a vital step in data mining and machine learning, especially for analyzing the data in high-dimensional feature space. Gene expression data usually consist of a few samples characterized by high-dimensional feature space. As a result, they are not suitable to be processed by simple methods, such as the filter-based method. In this study, we propose a novel feature selection algorithm based on the Explosion Gravitation Field Algorithm, called EGFAFS. To reduce the dimensions of the feature space to acceptable dimensions, we constructed a recommended feature pool by a series of Random Forests based on the Gini index. Furthermore, by paying more attention to the features in the recommended feature pool, we can find the best subset more efficiently. To verify the performance of EGFAFS for FS, we tested EGFAFS on eight gene expression datasets compared with four heuristic-based FS methods (GA, PSO, SA, and DE) and four other FS methods (Boruta, HSICLasso, DNN-FS, and EGSG). The results show that EGFAFS has better performance for FS on gene expression data in terms of evaluation metrics, having more than the other eight FS algorithms. The genes selected by EGFAGS play an essential role in the differential co-expression network and some biological functions further demonstrate the success of EGFAFS for solving FS problems on gene expression data

    Supervised Methods for Biomarker Detection from Microarray Experiments

    Get PDF
    Biomarkers are valuable indicators of the state of a biological system. Microarray technology has been extensively used to identify biomarkers and build computational predictive models for disease prognosis, drug sensitivity and toxicity evaluations. Activation biomarkers can be used to understand the underlying signaling cascades, mechanisms of action and biological cross talk. Biomarker detection from microarray data requires several considerations both from the biological and computational points of view. In this chapter, we describe the main methodology used in biomarkers discovery and predictive modeling and we address some of the related challenges. Moreover, we discuss biomarker validation and give some insights into multiomics strategies for biomarker detection.Non peer reviewe

    Optimizing Alzheimer's disease prediction using the nomadic people algorithm

    Get PDF
    The problem with using microarray technology to detect diseases is that not each is analytically necessary. The presence of non-essential gene data adds a computing load to the detection method. Therefore, the purpose of this study is to reduce the high-dimensional data size by determining the most critical genes involved in Alzheimer's disease progression. A study also aims to predict patients with a subset of genes that cause Alzheimer's disease. This paper uses feature selection techniques like information gain (IG) and a novel metaheuristic optimization technique based on a swarm’s algorithm derived from nomadic people’s behavior (NPO). This suggested method matches the structure of these individuals' lives movements and the search for new food sources. The method is mostly based on a multi-swarm method; there are several clans, each seeking the best foraging opportunities. Prediction is carried out after selecting the informative genes of the support vector machine (SVM), frequently used in a variety of prediction tasks. The accuracy of the prediction was used to evaluate the suggested system's performance. Its results indicate that the NPO algorithm with the SVM model returns high accuracy based on the gene subset from IG and NPO methods

    Identification of pathway and gene markers using enhanced directed random walk for multiclass cancer expression data

    Get PDF
    Cancer markers play a significant role in the diagnosis of the origin of cancers and in the detection of cancers from initial treatments. This is a challenging task owing to the heterogeneity nature of cancers. Identification of these markers could help in improving the survival rate of cancer patients, in which dedicated treatment can be provided according to the diagnosis or even prevention. Previous investigations show that the use of pathway topology information could help in the detection of cancer markers from gene expression. Such analysis reduces its complexity from thousands of genes to a few hundreds of pathways. However, most of the existing methods group different cancer subtypes into just disease samples, and consider all pathways contribute equally in the analysis process. Meanwhile, the interaction between multiple genes and the genes with missing edges has been ignored in several other methods, and hence could lead to the poor performance of the identification of cancer markers from gene expression. Thus, this research proposes enhanced directed random walk to identify pathway and gene markers for multiclass cancer gene expression data. Firstly, an improved pathway selection with analysis of variances (ANOVA) that enables the consideration of multiple cancer subtypes is performed, and subsequently the integration of k-mean clustering and average silhouette method in the directed random walk that considers the interaction of multiple genes is also conducted. The proposed methods are tested on benchmark gene expression datasets (breast, lung, and skin cancers) and biological pathways. The performance of the proposed methods is then measured and compared in terms of classification accuracy and area under the receiver operating characteristics curve (AUC). The results indicate that the proposed methods are able to identify a list of pathway and gene markers from the datasets with better classification accuracy and AUC. The proposed methods have improved the classification performance in the range of between 1% and 35% compared with existing methods. Cell cycle and p53 signaling pathway were found significantly associated with breast, lung, and skin cancers, while the cell cycle was highly enriched with squamous cell carcinoma and adenocarcinoma

    Machine learning methods for omics data integration

    Get PDF
    High-throughput technologies produce genome-scale transcriptomic and metabolomic (omics) datasets that allow for the system-level studies of complex biological processes. The limitation lies in the small number of samples versus the larger number of features represented in these datasets. Machine learning methods can help integrate these large-scale omics datasets and identify key features from each dataset. A novel class dependent feature selection method integrates the F statistic, maximum relevance binary particle swarm optimization (MRBPSO), and class dependent multi-category classification (CDMC) system. A set of highly differentially expressed genes are pre-selected using the F statistic as a filter for each dataset. MRBPSO and CDMC function as a wrapper to select desirable feature subsets for each class and classify the samples using those chosen class-dependent feature subsets. The results indicate that the class-dependent approaches can effectively identify unique biomarkers for each cancer type and improve classification accuracy compared to class independent feature selection methods. The integration of transcriptomics and metabolomics data is based on a classification framework. Compared to principal component analysis and non-negative matrix factorization based integration approaches, our proposed method achieves 20-30% higher prediction accuracies on Arabidopsis tissue development data. Metabolite-predictive genes and gene-predictive metabolites are selected from transcriptomic and metabolomic data respectively. The constructed gene-metabolite correlation network can infer the functions of unknown genes and metabolites. Tissue-specific genes and metabolites are identified by the class-dependent feature selection method. Evidence from subcellular locations, gene ontology, and biochemical pathways support the involvement of these entities in different developmental stages and tissues in Arabidopsis

    Computational models and approaches for lung cancer diagnosis

    Full text link
    The success of treatment of patients with cancer depends on establishing an accurate diagnosis. To this end, the aim of this study is to developed novel lung cancer diagnostic models. New algorithms are proposed to analyse the biological data and extract knowledge that assists in achieving accurate diagnosis results

    Evolutionary approaches to explainable machine learning

    Full text link
    Machine learning models are increasingly being used in critical sectors, but their black-box nature has raised concerns about accountability and trust. The field of explainable artificial intelligence (XAI) or explainable machine learning (XML) has emerged in response to the need for human understanding of these models. Evolutionary computing, as a family of powerful optimization and learning tools, has significant potential to contribute to XAI/XML. In this chapter, we provide a brief introduction to XAI/XML and review various techniques in current use for explaining machine learning models. We then focus on how evolutionary computing can be used in XAI/XML, and review some approaches which incorporate EC techniques. We also discuss some open challenges in XAI/XML and opportunities for future research in this field using EC. Our aim is to demonstrate that evolutionary computing is well-suited for addressing current problems in explainability, and to encourage further exploration of these methods to contribute to the development of more transparent, trustworthy and accountable machine learning models

    Swarm Learning for decentralized and confidential clinical machine learning

    Get PDF
    Fast and reliable detection of patients with severe and heterogeneous illnesses is a major goal of precision medicine1,2. Patients with leukaemia can be identified using machine learning on the basis of their blood transcriptomes3. However, there is an increasing divide between what is technically possible and what is allowed, because of privacy legislation4,5. Here, to facilitate the integration of any medical data from any data owner worldwide without violating privacy laws, we introduce Swarm Learning—a decentralized machine-learning approach that unites edge computing, blockchain-based peer-to-peer networking and coordination while maintaining confidentiality without the need for a central coordinator, thereby going beyond federated learning. To illustrate the feasibility of using Swarm Learning to develop disease classifiers using distributed data, we chose four use cases of heterogeneous diseases (COVID-19, tuberculosis, leukaemia and lung pathologies). With more than 16,400 blood transcriptomes derived from 127 clinical studies with non-uniform distributions of cases and controls and substantial study biases, as well as more than 95,000 chest X-ray images, we show that Swarm Learning classifiers outperform those developed at individual sites. In addition, Swarm Learning completely fulfils local confidentiality regulations by design. We believe that this approach will notably accelerate the introduction of precision medicine
    • …
    corecore