144 research outputs found

    Exploration Of Robotics Need In The Medical Field And Robotic Arm Operation Via Glove Control

    Get PDF
    This thesis project is an exercise in getting hands-on experience in redesigning and modifying a robotic system. It also involves understanding the current need for robotic applications in hospital settings. To achieve the above, a thorough literature review of the current state of robotics in a hospital setting was conducted. Moreover, a number of interviews with medical care professionals were completed. Three main themes were obtained from the literature review and five main themes were obtained from the interviews which will be presented in this thesis report. The next phase of the project involved redesigning a system that is composed of two main parts: a glove and a robotic arm. The glove consists of multiple flex sensors and an inertial measurement unit (IMU) that sends data to an Arduino, which processes the data and sends a signal through Bluetooth transmission to the robotic arm. The robotic arm consists of servo motors that move according to the signal that is received from the glove. The results of the current performance of the system will be presented

    Lux junior 2023: 16. Internationales Forum für den lichttechnischen Nachwuchs, 23. – 25. Juni 2023, Ilmenau : Tagungsband

    Get PDF
    Während des 16. Internationales Forums für den lichttechnischen Nachwuchs präsentieren Studenten, Doktoranden und junge Absolventen ihre Forschungs- und Entwicklungsergebnisse aus allen Bereichen der Lichttechnik. Die Themen bewegen sich dabei von Beleuchtungsanwendungen in verschiedensten Bereichen über Lichtmesstechnik, Kraftfahrzeugbeleuchung, LED-Anwendung bis zu nichtvisuellen Lichtwirkungen. Das Forum ist speziell für Studierende und junge Absolventen des Lichtbereiches konzipiert. Es bietet neben den Vorträgen und Postern die Möglichkeit zu Diskussionen und individuellem Austausch. In den 30 Jahren ihres Bestehens entwickelte sich die zweijährig stattfindende Tagung zu eine Traditionsveranstaltung, die das Fachgebiet Lichttechnik der TU Ilmenau gemeinsam mit der Bezirksgruppe Thüringen-Nordhessen der Deutschen Lichttechnischen Gesellschaft LiTG e. V. durchführt

    Virtual Model Building for Multi-Axis Machine Tools Using Field Data

    Get PDF
    Accurate machine dynamic models are the foundation of many advanced machining technologies such as virtual process planning and machine condition monitoring. Viewing recent designs of modern high-performance machine tools, to enhance the machine versatility and productivity, the machine axis configuration is becoming more complex and diversified, and direct drive motors are more commonly used. Due to the above trends, coupled and nonlinear multibody dynamics in machine tools are gaining more attention. Also, vibration due to limited structural rigidity is an important issue that must be considered simultaneously. Hence, this research aims at building high-fidelity machine dynamic models that are capable of predicting the dynamic responses, such as the tracking error and motor current signals, considering a wide range of dynamic effects such as structural flexibility, inter-axis coupling, and posture-dependency. Building machine dynamic models via conventional bottom-up approaches may require extensive investigation on every single component. Such approaches are time-consuming or sometimes infeasible for the machine end-users. Alternatively, as the recent trend of Industry 4.0, utilizing data via Computer Numerical Controls (CNCs) and/or non-intrusive sensors to build the machine model is rather favorable for industrial implementation. Thus, the methods proposed in this thesis are top-down model building approaches, utilizing available data from CNCs and/or other auxiliary sensors. The achieved contributions and results of this thesis are summarized below. As the first contribution, a new modeling and identification technique targeting a closed-loop control system of coupled rigid multi-axis feed drives has been developed. A multi-axis closed-loop control system, including the controller and the electromechanical plant, is described by a multiple-input multiple-output (MIMO) linear time-invariant (LTI) system, coupled with a generalized disturbance input that represents all the nonlinear dynamics. Then, the parameters of the open-loop and closed-loop dynamic models are respectively identified by a strategy that combines linear Least Squares (LS) and constrained global optimization. This strategy strikes a balance between model accuracy and computational efficiency. This proposed method was validated using an industrial 5-axis laser drilling machine and an experimental feed drive, achieving 2.38% and 5.26% root mean square (RMS) prediction error, respectively. Inter-axis coupling effects, i.e., the motion of one axis causing the dynamic responses of another axis, are correctly predicted. Also, the tracking error induced by motor ripple and nonlinear friction is correctly predicted as well. As the second contribution, the above proposed methodology is extended to also consider structural flexibility, which is a crucial behavior of large-sized industrial 5-axis machine tools. More importantly, structural vibration is nonlinear and posture-dependent due to the nature of a multibody system. In this thesis, prominent cases of flexibility-induced vibrations in a linear feed drive are studied and modeled by lumped mass-spring-damper system. Then, a flexible linear drive coupled with a rotary drive is systematically analyzed. It is found that the case with internal structural vibration between the linear and rotary drives requires an additional motion sensor for the proposed model identification method. This particular case is studied with an experimental setup. The thesis presents a method to reconstruct such missing internal structural vibration using the data from the embedded encoders as well as a low-cost micro-electromechanical system (MEMS) inertial measurement unit (IMU) mounted on the machine table. It is achieved by first synchronizing the data, aligning inertial frames, and calibrating mounting misalignments. Finally, the unknown internal vibration is reconstructed by comparing the rigid and flexible machine kinematic models. Due to the measurement limitation of MEMS IMUs and geometric assembly error, the reconstructed angle is unfortunately inaccurate. Nevertheless, the vibratory angular velocity and acceleration are consistently reconstructed, which is sufficient for the identification with reasonable model simplification. Finally, the reconstructed internal vibration along with the gathered servo data are used to identify the proposed machine dynamic model. Due to the separation of linear and nonlinear dynamics, the vibratory dynamics can be simply considered by adding complex pole pairs into the MIMO LTI system. Experimental validation shows that the identified model is able to predict the dynamic responses of the tracking error and motor force/torque to the input command trajectory and external disturbances, with 2% ~ 6% RMS error. Especially, the vibratory inter-axis coupling effect and posture-dependent effect are accurately depicted. Overall, this thesis presents a dynamic model-building approach for multi-axis feed drive assemblies. The proposed model is general and can be configured according to the kinematic configuration. The model-building approach only requires the data from the servo system or auxiliary motion sensors, e.g., an IMU, which is non-intrusive and in favor of industrial implementation. Future research includes further investigation of the IMU measurement, geometric error identification, validation using more complicated feed drive system, and applications to the planning and monitoring of 5-axis machining process

    Review of advanced road materials, structures, equipment, and detection technologies

    Get PDF
    As a vital and integral component of transportation infrastructure, pavement has a direct and tangible impact on socio-economic sustainability. In recent years, an influx of groundbreaking and state-of-the-art materials, structures, equipment, and detection technologies related to road engineering have continually and progressively emerged, reshaping the landscape of pavement systems. There is a pressing and growing need for a timely summarization of the current research status and a clear identification of future research directions in these advanced and evolving technologies. Therefore, Journal of Road Engineering has undertaken the significant initiative of introducing a comprehensive review paper with the overarching theme of “advanced road materials, structures, equipment, and detection technologies”. This extensive and insightful review meticulously gathers and synthesizes research findings from 39 distinguished scholars, all of whom are affiliated with 19 renowned universities or research institutions specializing in the diverse and multidimensional field of highway engineering. It covers the current state and anticipates future development directions in the four major and interconnected domains of road engineering: advanced road materials, advanced road structures and performance evaluation, advanced road construction equipment and technology, and advanced road detection and assessment technologies

    A Bibliography of NPS Space Systems Related Student Research, 2013-2022

    Get PDF
    Dudley Knox Library, Naval Postgraduate School.Approved for Public Release; distribution is unlimite

    Systematic Approaches for Telemedicine and Data Coordination for COVID-19 in Baja California, Mexico

    Get PDF
    Conference proceedings info: ICICT 2023: 2023 The 6th International Conference on Information and Computer Technologies Raleigh, HI, United States, March 24-26, 2023 Pages 529-542We provide a model for systematic implementation of telemedicine within a large evaluation center for COVID-19 in the area of Baja California, Mexico. Our model is based on human-centric design factors and cross disciplinary collaborations for scalable data-driven enablement of smartphone, cellular, and video Teleconsul-tation technologies to link hospitals, clinics, and emergency medical services for point-of-care assessments of COVID testing, and for subsequent treatment and quar-antine decisions. A multidisciplinary team was rapidly created, in cooperation with different institutions, including: the Autonomous University of Baja California, the Ministry of Health, the Command, Communication and Computer Control Center of the Ministry of the State of Baja California (C4), Colleges of Medicine, and the College of Psychologists. Our objective is to provide information to the public and to evaluate COVID-19 in real time and to track, regional, municipal, and state-wide data in real time that informs supply chains and resource allocation with the anticipation of a surge in COVID-19 cases. RESUMEN Proporcionamos un modelo para la implementación sistemática de la telemedicina dentro de un gran centro de evaluación de COVID-19 en el área de Baja California, México. Nuestro modelo se basa en factores de diseño centrados en el ser humano y colaboraciones interdisciplinarias para la habilitación escalable basada en datos de tecnologías de teleconsulta de teléfonos inteligentes, celulares y video para vincular hospitales, clínicas y servicios médicos de emergencia para evaluaciones de COVID en el punto de atención. pruebas, y para el tratamiento posterior y decisiones de cuarentena. Rápidamente se creó un equipo multidisciplinario, en cooperación con diferentes instituciones, entre ellas: la Universidad Autónoma de Baja California, la Secretaría de Salud, el Centro de Comando, Comunicaciones y Control Informático. de la Secretaría del Estado de Baja California (C4), Facultades de Medicina y Colegio de Psicólogos. Nuestro objetivo es proporcionar información al público y evaluar COVID-19 en tiempo real y rastrear datos regionales, municipales y estatales en tiempo real que informan las cadenas de suministro y la asignación de recursos con la anticipación de un aumento de COVID-19. 19 casos.ICICT 2023: 2023 The 6th International Conference on Information and Computer Technologieshttps://doi.org/10.1007/978-981-99-3236-

    Sensors and Systems for Indoor Positioning

    Get PDF
    This reprint is a reprint of the articles that appeared in Sensors' (MDPI) Special Issue on “Sensors and Systems for Indoor Positioning". The published original contributions focused on systems and technologies to enable indoor applications

    UAVs for the Environmental Sciences

    Get PDF
    This book gives an overview of the usage of UAVs in environmental sciences covering technical basics, data acquisition with different sensors, data processing schemes and illustrating various examples of application
    corecore