6,241 research outputs found

    Shortcomings of a parametric VaR approach and nonparametric improvements based on a non-stationary return series model

    Get PDF
    A non-stationary regression model for financial returns is examined theoretically in this paper. Volatility dynamics are modelled both exogenously and deterministic, captured by a nonparametric curve estimation on equidistant centered returns. We prove consistency and asymptotic normality of a symmetric variance estimator and of a one-sided variance estimator analytically, and derive remarks on the bandwidth decision. Further attention is paid to asymmetry and heavy tails of the return distribution, implemented by an asymmetric version of the Pearson type VII distribution for random innovations. By providing a method of moments for its parameter estimation and a connection to the Student-t distribution we offer the framework for a factor-based VaR approach. The approximation quality of the non-stationary model is supported by simulation studies. --heteroscedastic asset returns,non-stationarity,nonparametric regression,volatility,innovation modelling,asymmetric heavy-tails,distributional forecast,Value at Risk (VaR)

    Rational Multi-Curve Models with Counterparty-Risk Valuation Adjustments

    Get PDF
    We develop a multi-curve term structure setup in which the modelling ingredients are expressed by rational functionals of Markov processes. We calibrate to LIBOR swaptions data and show that a rational two-factor lognormal multi-curve model is sufficient to match market data with accuracy. We elucidate the relationship between the models developed and calibrated under a risk-neutral measure Q and their consistent equivalence class under the real-world probability measure P. The consistent P-pricing models are applied to compute the risk exposures which may be required to comply with regulatory obligations. In order to compute counterparty-risk valuation adjustments, such as CVA, we show how positive default intensity processes with rational form can be derived. We flesh out our study by applying the results to a basis swap contract.Comment: 34 pages, 9 figure

    Parallel hierarchical sampling:a general-purpose class of multiple-chains MCMC algorithms

    Get PDF
    This paper introduces the Parallel Hierarchical Sampler (PHS), a class of Markov chain Monte Carlo algorithms using several interacting chains having the same target distribution but different mixing properties. Unlike any single-chain MCMC algorithm, upon reaching stationarity one of the PHS chains, which we call the ā€œmotherā€ chain, attains exact Monte Carlo sampling of the target distribution of interest. We empirically show that this translates in a dramatic improvement in the samplerā€™s performance with respect to single-chain MCMC algorithms. Convergence of the PHS joint transition kernel is proved and its relationships with single-chain samplers, Parallel Tempering (PT) and variable augmentation algorithms are discussed. We then provide two illustrative examples comparing the accuracy of PHS with
    • ā€¦
    corecore