165 research outputs found

    Technology of swallowable capsule for medical applications

    Get PDF
    Medical technology has undergone major breakthroughs in recent years, especially in the area of the examination tools for diagnostic purposes. This paper reviews the swallowable capsule technology in the examination of the gastrointestinal system for various diseases. The wireless camera pill has created a more advanced method than many traditional examination methods for the diagnosis of gastrointestinal diseases such as gastroscopy by the use of an endoscope. After years of great innovation, commercial swallowable pills have been produced and applied in clinical practice. These smart pills can cover the examination of the gastrointestinal system and not only provide to the physicians a lot more useful data that is not available from the traditional methods, but also eliminates the use of the painful endoscopy procedure. In this paper, the key state-of-the-art technologies in the existing Wireless Capsule Endoscopy (WCE) systems are fully reported and the recent research progresses related to these technologies are reviewed. The paper ends by further discussion on the current technical bottlenecks and future research in this area

    Towards a micropositioning system for targeted drug delivery in wireless capsule endoscopy

    No full text
    This paper describes a novel micropositioning mechanism for achieving 1ml of targeted drug delivery within wireless capsule endoscopes. The mechanism allows a needle to be positioned within a 22.5° segment of a cylindrical capsule and be extendible by up to 4mm. The mechanism achieves both these functions using only a single micromotor and occupying a volume of just 200mm³ (including micromotor), this represents only 6.6% of the total available space. Through a detailed stress analysis it has been shown that the proposed mechanism can be fabricated using FDA approved materials and requires a power budget of under 3.3% of the available capacity. It is envisaged this mechanism would empower a new breed of capsule microrobots for therapy in addition to diagnostics for pathologies such as ulcerative colitis and small intestinal Crohn’s disease.Accepted versio

    A Non-Rigid Map Fusion-Based RGB-Depth SLAM Method for Endoscopic Capsule Robots

    Full text link
    In the gastrointestinal (GI) tract endoscopy field, ingestible wireless capsule endoscopy is considered as a minimally invasive novel diagnostic technology to inspect the entire GI tract and to diagnose various diseases and pathologies. Since the development of this technology, medical device companies and many groups have made significant progress to turn such passive capsule endoscopes into robotic active capsule endoscopes to achieve almost all functions of current active flexible endoscopes. However, the use of robotic capsule endoscopy still has some challenges. One such challenge is the precise localization of such active devices in 3D world, which is essential for a precise three-dimensional (3D) mapping of the inner organ. A reliable 3D map of the explored inner organ could assist the doctors to make more intuitive and correct diagnosis. In this paper, we propose to our knowledge for the first time in literature a visual simultaneous localization and mapping (SLAM) method specifically developed for endoscopic capsule robots. The proposed RGB-Depth SLAM method is capable of capturing comprehensive dense globally consistent surfel-based maps of the inner organs explored by an endoscopic capsule robot in real time. This is achieved by using dense frame-to-model camera tracking and windowed surfelbased fusion coupled with frequent model refinement through non-rigid surface deformations

    Wireless Capsule Endoscope for Targeted Drug Delivery: Mechanics and Design Considerations

    Get PDF

    Swallowable Wireless Capsule Endoscopy: Progress and Technical Challenges

    Get PDF
    Wireless capsule endoscopy (WCE) offers a feasible noninvasive way to detect the whole gastrointestinal (GI) tract and revolutionizes the diagnosis technology. However, compared with wired endoscopies, the limited working time, the low frame rate, and the low image resolution limit the wider application. The progress of this new technology is reviewed in this paper, and the evolution tendencies are analyzed to be high image resolution, high frame rate, and long working time. Unfortunately, the power supply of capsule endoscope (CE) is the bottleneck. Wireless power transmission (WPT) is the promising solution to this problem, but is also the technical challenge. Active CE is another tendency and will be the next geneion of the WCE. Nevertheless, it will not come true shortly, unless the practical locomotion mechanism of the active CE in GI tract is achieved. The locomotion mechanism is the other technical challenge, besides the challenge of WPT. The progress about the WPT and the active capsule technology is reviewed

    A compact targeted drug delivery mechanism for a next generation wireless capsule endoscope

    Get PDF
    This paper reports a novel medication release and delivery mechanism as part of a next generation wireless capsule endoscope (WCE) for targeted drug delivery. This subsystem occupies a volume of only 17.9mm3 for the purpose of delivering a 1 ml payload to a target site of interest in the small intestinal tract. An in-depth analysis of the method employed to release and deliver the medication is described and a series of experiments is presented which validates the drug delivery system. The results show that a variable pitch conical compression spring manufactured from stainless steel can deliver 0.59 N when it is fully compressed and that this would be sufficient force to deliver the onboard medication
    corecore