4,533 research outputs found

    On green routing and scheduling problem

    Full text link
    The vehicle routing and scheduling problem has been studied with much interest within the last four decades. In this paper, some of the existing literature dealing with routing and scheduling problems with environmental issues is reviewed, and a description is provided of the problems that have been investigated and how they are treated using combinatorial optimization tools

    Integrated approach to the assessment of CO2e-mitigation measures for the road passenger transport sector in Bahrain

    Get PDF
    The transport sector is one of the fastest-growing energy-consuming sectors in the world and it contributes greatly to emissions of carbon dioxide equivalent (CO2e). In Bahrain, CO2e emissions from the transport sector grew by an average of 8% annually between 1994 and 2006. The aim of this research was to develop an integrated approach to assess the measures adopted to reduce CO2e emissions by the transport sector within the context of climate change mitigation. This approach used the multi-criteria analysis methodology of the Analytic Hierarchy Process (AHP) to embed conventional assessment methods and a participatory approach. Three extensions to the original AHP methodology were developed: multi-AHP models, scenario packaging, and the examination of the plausibility of the results. The AHP results showed that certain fuel economy standards achieved the highest scores against five qualitative and quantitative criteria. Using socially and politically acceptable options, an integrated approach to CO2e mitigation could achieve a reduction in emissions of around 22% by 2030 (compared with 2010), at a cost of USD 112 per metric tonne of avoided CO2e emissions. Results from surveys of policymakers, experts, and the general public indicated that the outcomes of scenario packaging were plausible. The contributions of this research are two-fold. First, for the first time in Bahrain, the preferences of the general public have been considered and integrated with both the preferences of policymakers and experts and the results obtained from conventional assessment methods. Second, a structured approach for the integration of different assessment methods, transferable to other contexts, was developed and examined. Furthermore, multi-AHP models were introduced that can reflect the preferences of different concerned groups. Applications of this approach include assessment of the implementation of mitigation measures that could affect a number of concerned groups, decision making in energy-consuming sectors, and development of mitigation policy packages

    Integrated decision-support framework for sustainable fleet implementation

    Get PDF
    Issues regarding fossil fuel depletion, climate change and air pollution associated with motorised urban transportation have motivated intensive research to find cleaner, greener, and energy-efficient alternative fuels. Alternative fuel vehicles have a pivotal role in moving towards a sustainable future, with many already deployed as public transport fleet. Unlike private vehicles, the process of evaluating and selecting the appropriate fuel technology for the taxi fleet, for instance, can be demanding due to the involvement of stakeholders with different, often conflicting objectives. While many life cycle models have been developed as decision-support tools for evaluating vehicle technologies and fuel pathways based on multiple criteria, the different perspectives of fleet operators, policymakers and vehicle manufacturers may create a barrier towards the adoption of eco-friendly low carbon fleet. At present, the search for one optimal solution that performs the best in all aspects is difficult to achieve in practice. Therefore, there is a need for an integrated tool that can align the different priorities of economic, environmental and social perspectives of decision makers. This research aims to develop a computer-based framework that can be used as a shared justification tool to support multi-stakeholder decision making. The main contribution is the implementation and applicability testing of the framework via a probabilistic life cycle analysis with satisficing model. The model was initially tested and evaluated by representative third-party users from the transport industry. When demonstrated in an illustrative taxi case study, results from the life cycle analysis show constant compensation and trade-offs between the criteria. Subsequently, this thesis provides an example of how the satisficing choice model seeks a satisfactory solution that adequately meets the multiple objectives of decision makers. Also, the research provides insights for other research and industry efforts in developing tools to support decision making towards sustainable development practices

    Looking over the horizon: Visioning and Backcasting for Transport in the UK

    Get PDF

    Designing Sustainable Systems for Urban Freight Distribution through techniques of Multicriteria Decision Analysis

    Full text link
    [EN] This paper focuses on the analysis and selection of the parameters that have a major influence on the optimization of the urban freight distribution system by using sustainable means of transport, such as electric vehicles. In addition, a procedure has been be studied to identify the alternatives that may exist to establish the best system for urban freight distribution, which suits the stage that is considered using the most appropriate means of transportation available. To do this, it has been used the Analytic Hierarchy Process, one of the tools of multicriteria decision analysis. In order to establish an adequate planning of an urban freight distribution system using electric vehicles three hypotheses are necessary: (i) it is necessary to establish the strategic planning of the distribution process by defining the relative importance of the strategic objectives of the process of distribution of goods in the urban environment, both economically and technically and in social and environmental terms; (ii) it must be established the operational planning that allows the achievement of the strategic objectives with the most optimized allocation of available resources; and (iii) to determine the optimal architecture of the vehicle that best suits the operating conditions in which it will work and ensures optimum energy efficiency in operation.Muerza, V.; Larrodé, E.; Moreno- Jiménez, J. (2016). Designing Sustainable Systems for Urban Freight Distribution through techniques of Multicriteria Decision Analysis. En XII Congreso de ingeniería del transporte. 7, 8 y 9 de Junio, Valencia (España). Editorial Universitat Politècnica de València. 702-709. https://doi.org/10.4995/CIT2016.2016.3304OCS70270

    Towards the IMO’s GHG goals: a critical overview of the perspectives and challenges of the main options for decarbonizing international shipping

    Get PDF
    The Initial Strategy on reduction of greenhouse gas (GHG) emissions from ships adopted by the International Maritime Organization (IMO) in 2018 commits the IMO to reduce total GHG emissions of shipping by at least 50% by 2050. Though the direction of the Strategy is clear, the path to implementation remains uncertain. The ambitious IMO’s target calls for widespread uptake of lower and zero-carbon fuels, in addition to other energy eciency measures, including operational and market ones. Using a triangulated research approach, this paper provides a critical overview of the main measures and initiatives the shipping industry can adopt to try to cope with the new IMO’s requirements. The pros and cons of the most popular emission reduction options are investigated along with the main challenges and barriers to implementation and the potential facilitators that could foster a wider application. The framework that is outlined is complex and not without controversy. Research can play a key role as a facilitator of shipping’s decarbonization by providing its contribution to overcoming the existing controversies on various decarbonization options and by developing a wealth of knowledge that can encourage the implementation of low-carbon initiatives

    Integrated modelling for sustainability assessment and decision making of alternative fuel buses

    Get PDF
    In this paper, a hybrid life cycle sustainability assessment (LCSA) model integrating multi region input–output analysis with novel multi-criteria decision-making techniques is proposed to assess three different fuel alternatives: compressed natural gas (CNG), electric buses (EBs), and diesel buses (DBs). A global hybrid LCSA model first quantified the environmental, economic, and social impacts of alternative fuel buses. The results were investigated in terms of multiple combinations of manufacturing and end-of-life scenarios by encompassing impacts embedded in the global supply chains taking Qatar as a case applied to the proposed model. The Interval-Valued Neutrosophic Fuzzy (IVNF)-Analytic Hierarchy Process with the Combined Compromise Solution (CoCoSo) approach is used to rank the alternative fuel buses based on their corresponding sustainability performance. The proposed model will help in quantitatively capturing the macrolevel life cycle socioeconomic and environmental impacts along with optimally selecting alternatives to support sustainable urban transport policy towards a net-zero transportation system globally

    Contributions to Decision Support Systems, Energy Economics, and Shared Micromobility Research

    Get PDF
    This thesis includes research articles on Decision Support Systems, Energy Informatics, and Economics, Shared Micromobility, and Digital Study Assistance. For many years, established Information Systems (IS) scholars have called for solutionoriented research to address the most pressing problems of climate change. In this context, this thesis summarizes three consecutive research articles that present the multi-year development of a Decision Support System (DSS) for the energy transformation of the building sector. The DSS Nano Energy System Simulator (NESSI) was developed using Design Science Research guidelines and was further field tested and evaluated with stakeholders. In the discipline of Energy Informatics, a research article is presented that provides a morphological box for the classification of real microgrids. Next, a research article is presented that used regression analysis to investigate the influences of factors on residential photovoltaic system prices and revealed spatial price heterogeneity in Germany. Three research articles are outlined in the Shared Micromobility field. The first article uses a multi-year dataset of location data to examine the spatial and temporal use of e-scooters in Berlin. The second article builds on this and quantifies the influences of various factors such as weather, Covid-19 lockdowns, and other socio-economic parameters on the use of three micromobility concepts. The third article uses a web content mining process to collect a large dataset of police reports on e-scooter accidents. It analyzes risk factors as well as accident implications for riders. A research article on the requirements analysis and development of a digital study assistant concludes this thesis. Here, quantitative surveys and qualitative expert interviews are used to collect requirements from higher education institution stakeholders for a digital study assistant. In addition, developing a study assistance prototype is demonstrated and tested in the field
    • …
    corecore