1,914 research outputs found

    Composite particle algorithm for sustainable integrated dynamic ship routing and scheduling optimization

    Get PDF
    Ship routing and scheduling problem is considered to meet the demand for various products in multiple ports within the planning horizon. The ports have restricted operating time, so multiple time windows are taken into account. The problem addresses the operational measures such as speed optimisation and slow steaming for reducing carbon emission. A Mixed Integer Non-Linear Programming (MINLP) model is presented and it includes the issues pertaining to multiple time horizons, sustainability aspects and varying demand and supply at various ports. The formulation incorporates several real time constraints addressing the multiple time window, varying supply and demand, carbon emission, etc. that conceive a way to represent several complicating scenarios experienced in maritime transportation. Owing to the inherent complexity, such a problem is considered to be NP-Hard in nature and for solutions an effective meta-heuristics named Particle Swarm Optimization-Composite Particle (PSO-CP) is employed. Results obtained from PSO-CP are compared using PSO (Particle Swarm Optimization) and GA (Genetic Algorithm) to prove its superiority. Addition of sustainability constraints leads to a 4–10% variation in the total cost. Results suggest that the carbon emission, fuel cost and fuel consumption constraints can be comfortably added to the mathematical model for encapsulating the sustainability dimensions

    Sustainable maritime crude oil transportation: a split pickup and split delivery problem with time windows

    Get PDF
    This paper studies a novel sustainable vessel routing problem modeling considering the multi-compartment, split pickup and split delivery, and time windows concepts. In the presented problem, oil tankers transport crude oil from supply ports to demand ports around the globe. The objective is to find ship routes, as well as port arrival and departure times, in a way that minimizes transportation costs. As a second objective, we considered the sustainability aspect by minimizing the vessel energy efficiency operational indicator. Multiple products are transported by a heterogeneous fleet of tankers. Small realistic test instances are solved with the exact method

    Developing Model Of Closed Loop Supply Chain Network For Subsidized Lpg 3-Kgs In East Java-Indonesia

    Get PDF
    Demand of subsidized LPG 3-kgs in Indonesia has been increasing since the Indonesian government imposed a conversion program from kerosene to Liquefied Petroleum Gas (LPG) in 2007. The high increase in demand for subsidized LPG 3-kgs led to the scarcity of products availability. The design of a closed distribution system is required to ensure the availability of subsidized LPG 3-kgs. In this research, the development model of the integration of closed loop supply chain network and vehicle routing problem with simultaneous deliveries and pick-ups with time windows has been proposed. The mechanism of closed distribution system starts from the distributors send LPG empty tubes to filling stations. After filling station inspected and filled the LPG tubes, distributors delivered LPG 3-kgs subsidized from the filling station to some retailers. At the same time, the distributors take back the empty tubes from these retailers by considering the limitations of operational time in each retailers. The proposed model was tested on numerical example and analyzed the result

    A concise guide to existing and emerging vehicle routing problem variants

    Get PDF
    Vehicle routing problems have been the focus of extensive research over the past sixty years, driven by their economic importance and their theoretical interest. The diversity of applications has motivated the study of a myriad of problem variants with different attributes. In this article, we provide a concise overview of existing and emerging problem variants. Models are typically refined along three lines: considering more relevant objectives and performance metrics, integrating vehicle routing evaluations with other tactical decisions, and capturing fine-grained yet essential aspects of modern supply chains. We organize the main problem attributes within this structured framework. We discuss recent research directions and pinpoint current shortcomings, recent successes, and emerging challenges

    Ship routing and scheduling: the cart before the horse conjecture

    Get PDF

    Load-dependent speed optimization in maritime inventory routing

    Get PDF
    Maritime inventory routing problems involve determining optimal routes for seagoing vessels between ports while managing the inventory of each port. Normally, such problems are considered with the vessels operating at fixed sailing speeds. However, the speed of vessels can typically be adjusted within an interval, and the actual fuel consumption depends on both the load and the speed of the vessel. The fuel consumption function combines speed and load in a non-linear manner, but can be approximated through linearization. In this work, to evaluate the importance of taking into account that both speeds and load levels influence the fuel costs, the resulting solutions are contrasted with solutions from the case where speeds and travel costs are taken as constants, as well as the case where speed is a decision, but the cost considered to be independent of the load. For either of these cases, load-dependent speed optimization can be added as a post-processing step. Computational experiments show that combining speed and load do have an impact on the selection of routes in maritime inventory routing problems, and that proper modelling of the fuel consumption can reduce sailing costs significantly. On the test instances considered, taking into account speed while ignoring the load leads to cost savings of around 38%. Considering the fuel consumption as a function of speed and load when planning leads to additional cost savings of 28%. Keywords: mixed integer programming, non-linear, fuel consumption, transportpublishedVersio

    Contributions to behavioural freight transport modelling

    Get PDF

    Roulette-Wheel Selection-Based PSO Algorithm for Solving the Vehicle Routing Problem with Time Windows

    Full text link
    The well-known Vehicle Routing Problem with Time Windows (VRPTW) aims to reduce the cost of moving goods between several destinations while accommodating constraints like set time windows for certain locations and vehicle capacity. Applications of the VRPTW problem in the real world include Supply Chain Management (SCM) and logistic dispatching, both of which are crucial to the economy and are expanding quickly as work habits change. Therefore, to solve the VRPTW problem, metaheuristic algorithms i.e. Particle Swarm Optimization (PSO) have been found to work effectively, however, they can experience premature convergence. To lower the risk of PSO's premature convergence, the authors have solved VRPTW in this paper utilising a novel form of the PSO methodology that uses the Roulette Wheel Method (RWPSO). Computing experiments using the Solomon VRPTW benchmark datasets on the RWPSO demonstrate that RWPSO is competitive with other state-of-the-art algorithms from the literature. Also, comparisons with two cutting-edge algorithms from the literature show how competitive the suggested algorithm is
    • …
    corecore