728 research outputs found

    Scenarios for the development of smart grids in the UK: literature review

    Get PDF
    Smart grids are expected to play a central role in any transition to a low-carbon energy future, and much research is currently underway on practically every area of smart grids. However, it is evident that even basic aspects such as theoretical and operational definitions, are yet to be agreed upon and be clearly defined. Some aspects (efficient management of supply, including intermittent supply, two-way communication between the producer and user of electricity, use of IT technology to respond to and manage demand, and ensuring safe and secure electricity distribution) are more commonly accepted than others (such as smart meters) in defining what comprises a smart grid. It is clear that smart grid developments enjoy political and financial support both at UK and EU levels, and from the majority of related industries. The reasons for this vary and include the hope that smart grids will facilitate the achievement of carbon reduction targets, create new employment opportunities, and reduce costs relevant to energy generation (fewer power stations) and distribution (fewer losses and better stability). However, smart grid development depends on additional factors, beyond the energy industry. These relate to issues of public acceptability of relevant technologies and associated risks (e.g. data safety, privacy, cyber security), pricing, competition, and regulation; implying the involvement of a wide range of players such as the industry, regulators and consumers. The above constitute a complex set of variables and actors, and interactions between them. In order to best explore ways of possible deployment of smart grids, the use of scenarios is most adequate, as they can incorporate several parameters and variables into a coherent storyline. Scenarios have been previously used in the context of smart grids, but have traditionally focused on factors such as economic growth or policy evolution. Important additional socio-technical aspects of smart grids emerge from the literature review in this report and therefore need to be incorporated in our scenarios. These can be grouped into four (interlinked) main categories: supply side aspects, demand side aspects, policy and regulation, and technical aspects.

    A review of internet of energy based building energy management systems: Issues and recommendations

    Get PDF
    © 2013 IEEE. A building energy management system (BEMS) is a sophisticated method used for monitoring and controlling a building's energy requirements. A number of potential studies were conducted in nearly or net zero energy buildings (nZEBs) for the optimization of building energy consumption through efficient and sustainable ways. Moreover, policy makers are approving measures to improve building energy efficiency in order to foster sustainable energy usages. However, the intelligence of existing BEMSs or nZEBs is inadequate, because of the static set points for heating, cooling, and lighting, the complexity of large amounts of BEMS data, data loss, and network problems. To solve these issues, a BEMS or nZEB solution based on the Internet of energy (IoE) provides disruptive opportunities for revolutionizing sustainable building energy management. This paper presents a critical review of the potential of an IoE-based BEMS for enhancing the performance of future generation building energy utilization. The detailed studies of the IoE architecture, typical nZEB configuration, different generations of nZEB, and smart building energy systems for future BEMS are investigated. The operations, advantages, and limitations of the existing BEMSs or nZEBs are illustrated. A comprehensive review of the different types of IoE-based BEMS technologies, such as energy routers, storage systems and materials, renewable sources, and plug-and-play interfaces, is then presented. The rigorous review indicates that existing BEMSs require advanced controllers integrated with IoE-based technologies for sustainable building energy usage. The main objective of this review is to highlight several issues and challenges of the conventional controllers and IoE applications of BEMSs or nZEBs. Accordingly, the review provides several suggestions for the research and development of the advanced optimized controller and IoE of future BEMSs. All the highlighted insights and recommendations of this review will hopefully lead to increasing efforts toward the development of the future BEMS applications

    A Distributed IoT Infrastructure to Test and Deploy Real-Time Demand Response in Smart Grids

    Get PDF
    © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. In this paper, we present a novel distributed framework for real-time management and co-simulation of demand response (DR) in smart grids. Our solution provides a (near-) real-time co-simulation platform to validate new DR-policies exploiting Internet-of-Things approach performing software-in-the-loop. Hence, the behavior of real-world power systems can be emulated in a very realistic way and different DR-policies can be easily deployed and/or replaced in a plug-and-play fashion, without affecting the rest of the framework. In addition, our solution integrates real Internet-connected smart devices deployed at customer premises and along the smart grid to retrieve energy information and send actuation commands. Thus, the framework is also ready to manage DR in a real-world smart grid. This is demonstrated on a realistic smart grid with a test case DR-policy

    LabChain: an Interactive Prototype for Synthetic Peer-to-Peer Trade Research in Experimental Energy Economics

    Get PDF
    Blockchain-based peer-to-peer (P2P) electricity markets received considerable attention in the past years, leading to a rich variety of proposed market designs. Yet, little comparability and consensus exists on optimal market design, also due to a lack of common evaluation and benchmarking infrastructure. This article describes LabChain, an interactive prototype as research infrastructure for conducting experiments in (simulated) P2P electricity markets involving real human actors. The software stack comprises: (i) an (open) data layer for experiment configuration, (ii) a blockchain layer to reliably document bids and transactions, (iii) an experiment coordination layer and (iv) a user interface layer for participant interactions. As evaluation environment for human interactions within a laboratory setting, researchers can investigate patterns based on energy system and market setup and can compare and evaluate designs under real human behavior allowing alignment of intentions and outcomes. This contributes to the evaluation and benchmarking infrastructure discourse

    Simulation and Analysis of the Operation and Reconfiguration of a Medium Voltage Distribution Network in a Smart Grid Context in MATLAB Simulink

    Get PDF
    This work will present a Medium Voltage Distribution Network that is operated as a Smart Grid. As the distribution infrastructure for electric energy ages and the share of EV’s and renewables increases, changes will have to be made to support the increasing power flows in the network. A more long-term solution than reinforcing the network with heavier cables is constructing an intelligent network that reacts to changing power flows inside the network and adapts accordingly to guarantee optimal functionality. External data from an optimisation algorithm is used to determine the switching behaviour. The network was modeled and analysed using a simulation software. If done correctly, a simulation can offer a lot of insight for only a fraction of the cost of constructing and testing the network in reality. MATLAB Simulink was used for the virtual modeling and analysis of the network. The main objective is to construct a model of the MVDN and use it to generate and analyse the power flows in the network to determine the plausibility of exploiting a similar network in an existing city. The models for each of the network components were developed and picked to combine them into a functioning network model based on the smart city’s topology. Simulating a smart grid is in essence not novel, but has not been done in Simulink before in this context. The hardest obstacle to overcome during the construction of the network model was finding a way to achieve the making and breaking of network connections in a way that Simulink could compute the network parameters correctly and in a timely manner. A whole section is dedicated to resolving these development issues. Following this, the results of the simulation regarding power flows and losses in the network are discussed. When it comes to the renewable generation implementation, the results showed promising results, even on days with low wind velocity the renewables aided in reducing the power demanded from the substation. The total generated power is compared with the total consumed power in the loads to find the grid losses. It became apparent very quickly that the grid losses were very high, up to 9.7%, which is a lot higher than the expected 2-6%. Overall the model showed promising results, as well as serving as a baseline for future works to improve upon

    Impact of Interdisciplinary Research on Planning, Running, and Managing Electromobility as a Smart Grid Extension

    Get PDF
    The smart grid is concerned with energy efficiency and with the environment, being a countermeasure against the territory devastations that may originate by the fossil fuel mining industry feeding the conventional power grids. This paper deals with the integration between the electromobility and the urban power distribution network in a smart grid framework, i.e., a multi-stakeholder and multi-Internet ecosystem (Internet of Information, Internet of Energy, and Internet of Things) with edge computing capabilities supported by cloud-level services and with clean mapping between the logical and physical entities involved and their stakeholders. In particular, this paper presents some of the results obtained by us in several European projects that refer to the development of a traffic and power network co-simulation tool for electro mobility planning, platforms for recharging services, and communication and service management architectures supporting interoperability and other qualities required for the implementation of the smart grid framework. For each contribution, this paper describes the inter-disciplinary characteristics of the proposed approaches

    A Widespread Review of Smart Grids Towards Smart Cities

    Get PDF
    © 2019 by the authorsNowadays, the importance of energy management and optimization by means of smart devices has arisen as an important issue. On the other hand, the intelligent application of smart devices stands as a key element in establishing smart cities, which have been suggested as the solution to complicated future urbanization difficulties in coming years. Considering the scarcity of traditional fossil fuels in the near future, besides their ecological problems the new smart grids have demonstrated the potential to merge the non-renewable and renewable energy resources into each other leading to the reduction of environmental problems and optimizing operating costs. The current paper clarifies the importance of smart grids in launching smart cities by reviewing the advancement of micro/nano grids, applications of renewable energies, energy-storage technologies, smart water grids in smart cities. Additionally a review of the major European smart city projects has been carried out. These will offer a wider vision for researchers in the operation, monitoring, control and audit of smart-grid systems.publishedVersio

    Sustainable modular IoT solution for smart cities applications supported by machine learning algorithms

    Get PDF
    The Internet of Things (IoT) and Smart Cities are nowadays a big trend, but with the proliferation of these systems several challenges start to appear and put in jeopardy the acceptance by the population, mainly in terms of sustainability and environmental issues. This Thesis introduces a new system composed by a modular IoT smart node that is self-configurable and sustainable with the support of machine learning techniques, as well as the research and development to achieve a innovative solution considering data analysis, wireless communications and hardware and software development. For all these, concepts are introduced, research methodologies, tests and results are presented and discussed as well as the development and implementation. The developed research and methodology shows that Random Forest was the best choice for the data analysis in the self-configuration of the hardware and communication systems and that Edge Computing has an advantage in terms of energy efficiency and latency. The autonomous communication system was able to create a 65% more sustainable node, in terms of energy consumption, with only a 13% decrease in quality of service. The modular approach for the smart node presented advantages in the integration, scalability and implementation of smart cities projects when facing traditional implementations, reducing up to 45% the energy consumption of the overall system and 60% of messages exchanged, without compromising the system performance. The deployment of this new system will help Smart Cities, in a worldwide fashion, to decrease their environmental issues and comply with rules and regulations to reduce CO2 emission.A Internet das Coisas (IoT) e as Cidades Inteligentes são hoje uma grande tendência, mas com a rápida evolução destes sistemas são vários os desafios que põem em causa a sua aceitação por parte das populações, maioritariamente devido a problemas ambientais e de sustentabilidade. Esta Tese introduz um novo sistema composto por nós de IoT inteligentes que são auto-configuáveis e sustentáveis suportados por de aprendizagem automática, e o trabalho de investigação e desenvolvimento para se obter uma solução inovadora que considera a análise de dados, comunicações sem fios e o desenvolvimento do hardware e software. Para todos estes, os conceitos chave são introduzidos, as metodologias de investigação, testes e resultados são apresentados e discutidos, bem como todo o desenvolvimento e implementação. Através do trabalho desenvolvido mostra-se que as Árvores Aleatórias são a melhor escolha para análise de dados em termos da autoconfiguração do hardware e sistema de comunicações e que a computação nos nós tem uma vantagem em termos de eficiência energética e latência. O sistema de configuração autónoma de comunicações foi capaz de criar um nós 65% mais sustentável, em termos en- ergéticos, comprometendo apenas em 13% a qualidade do servi ̧co. A solução modular do nó inteligente apresentou vantagens na integração, escalabilidade e implementação de projectos para Cidades Inteligentes quando comparado com soluções tradicionais, reduzindo em 45% o consumo energético e 60% a troca de mensagens, sem comprometer a qualidade do sistema. A implementação deste novo sistema irá ajudar as cidades inteligentes, em todo o mundo, a diminuir os seus problemas ambientais e a cumprir com as normas e regulamentos para reduzir as emissões de CO2

    Demand Response Driven Load Scheduling in Formal Smart Grid Framework

    Get PDF
    In this technical report, we present the current state of the research conducted during the first part of the PhD project named “Demand Response Driven Load Scheduling in Formal Smart Grid Framework”. The PhD project focuses on smart grids which employ information and communication technologies to assist the electricity production, distribution, and consumption. Designing smart grid applications is a novel challenging task that requires modeling, integrating, and validating different grid aspects in an efficient way. The project tackles such challenges by proposing an effective framework to formally describe smart grid elements along with their interactions. To validate this framework, the report concentrates on deploying efficiency in managing the electricity consumption in households which requires focusing on different impacts of demand response programs running in the smart grid to engage consumers to participate. A demand response system is considered which is connected to all households and utilizes their information to determine an effective load management strategy taking into account the grid constraints imposed by distribution system operators. The main responsibility of the demand response system is scheduling the operation of appliances of a large number of consumers in order to achieve a network-wide optimized performance. Finally, the PhD report demonstrates the simulation results, publications, courses, and dissemination activities done during this period. They are followed by envisaging future plans that will lead to completion of the PhD study
    corecore