65,393 research outputs found

    On Strong and Weak Sustainability, with an Application to Self-Suspending Real-Time Tasks

    Get PDF
    Motivated by an apparent contradiction regarding whether certain scheduling policies are sustainable, we revisit the topic of sustainability in real-time scheduling and argue that the existing definitions of sustainability should be further clarified and generalized. After proposing a formal, generic sustainability theory, we relax the existing notion of (strongly) sustainable scheduling policy to provide a new classification called weak sustainability. Proving weak sustainability properties allows reducing the number of variables that must be considered in the search of a worst-case schedule, and hence enables more efficient schedulability analyses and testing regimes even for policies that are not (strongly) sustainable. As a proof of concept, and to better understand a model for which many mistakes were found in the literature, we study weak sustainability in the context of dynamic self-suspending tasks, where we formalize a generic suspension model using the Coq proof assistant and provide a machine-checked proof that any JLFP scheduling policy is weakly sustainable with respect to job costs and variable suspension times

    On Strong and Weak Sustainability, with an Application to Self-Susp ending Real-Time Tasks

    Get PDF
    Motivated by an apparent contradiction regarding whether certain scheduling policies are sustainable, we revisit the topic of sustainability in real-time scheduling and argue that the existing definitions of sustainability should be further clarified and generalized. After proposing a formal, generic sustainability theory, we relax the existing notion of (strongly) sustainable scheduling policy to provide a new classification called weak sustainability. Proving weak sustainability properties allows reducing the number of variables that must be considered in the search of a worst-case schedule, and hence enables more efficient schedulability analyses and testing regimes even for policies that are not (strongly) sustainable. As a proof of concept, and to better understand a model for which many mistakes were found in the literature, we study weak sustainability in the context of dynamic self-suspending tasks, where we formalize a generic suspension model using the Coq proof assistant and provide a machine-checked proof that any JLFP scheduling policy is weakly sustainable with respect to job costs and variable suspension times.info:eu-repo/semantics/publishedVersio

    Modular software architecture for flexible reservation mechanisms on heterogeneous resources

    Get PDF
    Management, allocation and scheduling of heterogeneous resources for complex distributed real-time applications is a chal- lenging problem. Timing constraints of applications may be fulfilled by a proper use of real-time scheduling policies, admission control and enforcement of timing constraints. However, it is not easy to design basic infrastructure services that allow for an easy access to the allocation of multiple heterogeneous resources in a distributed environment. In this paper, we present a middleware for providing distributed soft real-time applications with a uniform API for reserving heterogeneous resources with real-time scheduling capabilities in a distributed environment. The architecture relies on standard POSIX OS facilities, such as time management and standard TCP/IP networking services, and it is designed around CORBA, in order to facilitate modularity, flexibility and portability of the applications using it. However, real-time scheduling is supported by proper extensions at the kernel-level, plugged within the framework by means of dedicated resource managers. Our current implementation on Linux supports reservation of CPU, disk and network bandwidth. However, additional resource managers supporting alternative real-time schedulers for these resources, as well as additional types of resources, may be easily added. We present experimental results gathered on both synthetic applications and a real multimedia video streaming case study, showing advantages deriving from the use of the proposed middleware. Finally, overhead figures are reported, showing sustainability of the approach for a wide class of complex, distributed, soft real-time applications

    Global EDF scheduling of directed acyclic graphs on multiprocessor systems

    Get PDF
    International audienceIn this paper, we study the problem of real-time scheduling of parallel tasks represented by a Directed Acyclic Graph (DAG) on multiprocessor architectures. We focus on Global Earliest Deadline First scheduling of sporadic DAG tasksets with constrained-deadlines on a system of homogeneous processors. Our contributions consist in analyzing DAG tasks by considering their internal structures and providing a tighter bound on the workload and interference analysis. This approach consists in assigning a local offset and deadline for each subtask in the DAG. We derive an improved sufficient schedulability test w.r.t. an existing test proposed in the state of the art. Then we discuss the sustainability of this test

    Energy- and labor-aware production scheduling for sustainable manufacturing : a case study on plastic bottle manufacturing

    Get PDF
    Among the potential roadmaps towards sustainable production, the emerging energy-cost-aware production scheduling philosophy is considered as one promising direction. Therein, sustainability objectives, e.g., minimization of energy consumption/cost of production processes and stabilization of the electricity grid, can be achieved by manufacturing enterprises in a low-cost manner. However, these sustainability goals should be integrated with conventional production constraints besides the due date, e.g., reasonable labor cost based on work shifts, no production at weekends, and changeovers for different product types. This paper formulates a mixed-integer linear programming model for energy-and labor-cost-aware production scheduling at the unit process level, considering all the aforementioned constraints. A state-based energy model is used to reveal the energy consumption behavior of a process over time. It thus enables fine-grained energy-aware production scheduling. A case study is conducted for a blow molding process in a Belgian plastic bottle manufacturer. The measured power data enables to build an empirical energy model. The production scheduling is performed under real-time electricity pricing data. As a result, production loads are automatically shifted to the optimal periods. The optimal idle mode is automatically selected between production loads (powering off, idle, etc.). A schedule of joint energy cost and labor cost minimization is demonstrated to reduce 12% and 5% of total cost, compared to schedules that minimize energy and labor cost, respectively. In conclusion, although the labor wage is usually higher during periods with lower electricity price, energy and labor costs can be jointly optimized as a single objective to help factories minimize the production expenditure. (C) 2017 The Authors. Published by Elsevier B.V

    Train-scheduling optimization model for railway networks with multiplatform stations

    Get PDF
    This paper focuses on optimizing the schedule of trains on railway networks composed of busy complex stations. A mathematical formulation of this problem is provided as a Mixed Integer Linear Program (MILP). However, the creation of an optimal new timetable is an NP-hard problem; therefore, the MILP can be solved for easy cases, computation time being impractical for more complex examples. In these cases, a heuristic approach is provided that makes use of genetic algorithms to find a good solution jointly with heuristic techniques to generate an initial population. The algorithm was applied to a number of problem instances producing feasible, though not optimal, solutions in several seconds on a laptop, and compared to other proposals. Some improvements are suggested to obtain better results and further improve computation time. Rail transport is recognized as a sustainable and energy-efficient means of transport. Moreover, each freight train can take a large number of trucks off the roads, making them safer. Studies in this field can help to make railways more attractive to travelers by reducing operative cost, and increasing the number of services and their punctuality. To improve the transit system and service, it is necessary to build optimal train scheduling. There is an interest from the industry in automating the scheduling process. Fast computerized train scheduling, moreover, can be used to explore the effects of alternative draft timetables, operating policies, station layouts, and random delays or failures.Postprint (published version

    Composite particle algorithm for sustainable integrated dynamic ship routing and scheduling optimization

    Get PDF
    Ship routing and scheduling problem is considered to meet the demand for various products in multiple ports within the planning horizon. The ports have restricted operating time, so multiple time windows are taken into account. The problem addresses the operational measures such as speed optimisation and slow steaming for reducing carbon emission. A Mixed Integer Non-Linear Programming (MINLP) model is presented and it includes the issues pertaining to multiple time horizons, sustainability aspects and varying demand and supply at various ports. The formulation incorporates several real time constraints addressing the multiple time window, varying supply and demand, carbon emission, etc. that conceive a way to represent several complicating scenarios experienced in maritime transportation. Owing to the inherent complexity, such a problem is considered to be NP-Hard in nature and for solutions an effective meta-heuristics named Particle Swarm Optimization-Composite Particle (PSO-CP) is employed. Results obtained from PSO-CP are compared using PSO (Particle Swarm Optimization) and GA (Genetic Algorithm) to prove its superiority. Addition of sustainability constraints leads to a 4–10% variation in the total cost. Results suggest that the carbon emission, fuel cost and fuel consumption constraints can be comfortably added to the mathematical model for encapsulating the sustainability dimensions
    • …
    corecore