3 research outputs found

    Multi view based imaging genetics analysis on Parkinson disease

    Get PDF
    Longitudinal studies integrating imaging and genetic data have recently become widespread among bioinformatics researchers. Combining such heterogeneous data allows a better understanding of complex diseases origins and causes. Through a multi-view based workflow proposal, we show the common steps and tools used in imaging genetics analysis, interpolating genotyping, neuroimaging and transcriptomic data. We describe the advantages of existing methods to analyze heterogeneous datasets, using Parkinson\u2019s Disease (PD) as a case study. Parkinson's disease is associated with both genetic and neuroimaging factors, however such imaging genetics associations are at an early investigation stage. Therefore it is desirable to have a free and open source workflow that integrates different analysis flows in order to recover potential genetic biomarkers in PD, as in other complex diseases

    Association of plasma Aβ40/Aβ42 ratio and brain Aβ accumulation: testing a whole-brain PLS-VIP in individuals at risk of Alzheimer's disease

    Get PDF
    Molecular and brain regional/network-wise pathophysiological changes at preclinical stages of Alzheimer's disease (AD) have primarily been found through knowledge-based studies conducted in late-stage mild cognitive impairment/dementia populations. However, such an approach may compromise the objective of identifying the earliest spatial-temporal pathophysiological processes. We investigated 261 individuals with subjective memory complaints, a condition at increased risk of AD, to test a whole-brain, non-a-priori method based on partial least squares, in unraveling the association between plasma Aβ42/Aβ40 ratio and an extensive set of brain regions characterized through molecular imaging of Aβ accumulation and cortical metabolism. Significant associations were mapped onto large-scale networks, identified through an atlas and by knowledge, to elaborate on the reliability of the results. Plasma Aβ42/40 ratio was associated with Aβ-PET uptake (but not FDG-PET) in regions generally investigated in preclinical AD such as those belonging to the default mode network, but also in regions/networks normally not accounted - including the central executive and salience networks - which likely have a selective vulnerability to incipient Aβ accumulation. The present whole-brain approach is promising to investigate early pathophysiological changes of AD to fully capture the complexity of the disease, which is essential to develop timely screening, detection, diagnostic, and therapeutic interventions

    The Role of Schwann Cell Mitochondrial Metabolism in Schwann Cell Biology and Axonal Survival

    Get PDF
    Mitochondrial dysfunction has emerged as a common cause of peripheral neuropathies. While the role of neuronal and axonal mitochondria in peripheral nerve disease is well appreciated, whether Schwann cell: SC) mitochondrial deficits contribute to peripheral neuropathies is unclear. Greater insight into the biology and pathology of SC mitochondrial metabolism could be relevant to the treatment of peripheral neuropathies, particularly because SCs critically support axonal stability and function as well as promote peripheral nerve regeneration. The present thesis investigates the contribution of SC mitochondrial deficits to disease progression in peripheral neuropathies as well as the gene regulatory network that drives the SC regenerative response after injury and in disease states. We describe the generation and characterization of the first mouse model useful in directly interrogating the contribution of SC mitochondrial dysfunction to peripheral neuropathy. These mice: Tfam-SCKOs) were produced through the tissue-specific deletion of the mitochondrial transcription factor A gene: Tfam), which is required for mtDNA transcription and replication. Interestingly, induction of SC-specific mitochondrial dysfunction did not affect SC survival; instead, these deficits resulted in a severe, progressive peripheral neuropathy characterized by extensive axonal degeneration that recapitulated critical features of human neuropathy. Mechanistically, we demonstrated that SC mitochondrial dysfunction activates a maladaptive integrated stress response and causes a shift in lipid metabolism away from new lipid biosynthesis towards increased lipid oxidation. These alterations in lipid metabolism caused the early depletion of key myelin lipid components as well as a dramatic accumulation of acylcarnitine lipid intermediates. Importantly, release of acylcarnitines from SCs was toxic to axons and induced their degeneration. Our results show that normal mitochondrial function in SCs is essential for maintenance of axonal survival and normal peripheral nerve function, suggesting that SC mitochondrial dysfunction contributes to human peripheral neuropathies. Moreover, our work identifies alterations in SC lipid metabolism and the accumulation of toxic lipid intermediates as novel mechanisms driving some of the pathology in peripheral neuropathies associated with mitochondrial dysfunction. Tfam-SCKO mice showed a severe deficiency in their ability to remyelinate peripheral nerve axons after injury. To gain insight into the highly orchestrated process of SC-mediated support of axonal regeneration, we also investigated the transcriptional and post-transcriptional gene regulatory program that drives the SC regenerative response. We profiled the expression of SC microRNAs: miRNAs) after peripheral nerve lesions as well as characterized the injury response of SCs with disrupted miRNA processing and showed that SC miRNAs modulated the injury response largely by targeting positive regulators of SC dedifferentiation/proliferation. SC miRNAs cooperated with transcriptional regulators to promote rapid and robust transitions between the distinct differentiation states necessary to support nerve regeneration. Moreover, we identified miR-34a and miR-140 as regulators of SC proliferation and myelination. We then used a novel computational approach to infer the gene regulatory network involved in this SC injury response and gain insight on cooperative regulation of this process by transcription factors and miRNAs. Together, the results described in the present thesis represent a significant increase in our understanding of how mitochondrial abnormalities specifically in SCs contribute to clinical impairment in patients with peripheral neuropathy. Moreover, the mechanistic characterization of lipid metabolism abnormalities in SCs following mitochondrial dysfunction elucidates potentially important therapeutic targets. Finally, our analysis of the transcriptional and post-transcriptional gene regulatory network involved in the SC regenerative response also provides valuable insight that could be harnessed to help restore normal nerve function in patients with peripheral neuropathy
    corecore