589 research outputs found

    Time-optimized high-resolution readout-segmented diffusion tensor imaging

    Get PDF
    Readout-segmented echo planar imaging with 2D navigator-based reacquisition is an uprising technique enabling the sampling of high-resolution diffusion images with reduced susceptibility artifacts. However, low signal from the small voxels and long scan times hamper the clinical applicability. Therefore, we introduce a regularization algorithm based on total variation that is applied directly on the entire diffusion tensor. The spatially varying regularization parameter is determined automatically dependent on spatial variations in signal-to-noise ratio thus, avoiding over- or under-regularization. Information about the noise distribution in the diffusion tensor is extracted from the diffusion weighted images by means of complex independent component analysis. Moreover, the combination of those features enables processing of the diffusion data absolutely user independent. Tractography from in vivo data and from a software phantom demonstrate the advantage of the spatially varying regularization compared to un-regularized data with respect to parameters relevant for fiber-tracking such as Mean Fiber Length, Track Count, Volume and Voxel Count. Specifically, for in vivo data findings suggest that tractography results from the regularized diffusion tensor based on one measurement (16 min) generates results comparable to the un-regularized data with three averages (48 min). This significant reduction in scan time renders high resolution (1×1×2.5 mm3) diffusion tensor imaging of the entire brain applicable in a clinical context

    Diffusion tensor imaging:A diagnostic tool for neuromuscular conditions

    Get PDF

    Quantitative diffusion MRI with application to multiple sclerosis

    Get PDF
    Diffusion MRI (dMRI) is a uniquely non-invasive probe of biological tissue properties, increasingly able to provide access to ever more intricate structural and microstructural tissue information. Imaging biomarkers that reveal pathological alterations can help advance our knowledge of complex neurological disorders such as multiple sclerosis (MS), but depend on both high quality image data and robust post-processing pipelines. The overarching aim of this thesis was to develop methods to improve the characterisation of brain tissue structure and microstructure using dMRI. Two distinct avenues were explored. In the first approach, network science and graph theory were used to identify core human brain networks with improved sensitivity to subtle pathological damage. A novel consensus subnetwork was derived using graph partitioning techniques to select nodes based on independent measures of centrality, and was better able to explain cognitive impairment in relapsing-remitting MS patients than either full brain or default mode networks. The influence of edge weighting scheme on graph characteristics was explored in a separate study, which contributes to the connectomics field by demonstrating how study outcomes can be affected by an aspect of network design often overlooked. The second avenue investigated the influence of image artefacts and noise on the accuracy and precision of microstructural tissue parameters. Correction methods for the echo planar imaging (EPI) Nyquist ghost artefact were systematically evaluated for the first time in high b-value dMRI, and the outcomes were used to develop a new 2D phase-corrected reconstruction framework with simultaneous channel-wise noise reduction appropriate for dMRI. The technique was demonstrated to alleviate biases associated with Nyquist ghosting and image noise in dMRI biomarkers, but has broader applications in other imaging protocols that utilise the EPI readout. I truly hope the research in this thesis will influence and inspire future work in the wider MR community

    Robust MR-based approaches to quantifying white matter structure and structure/function alterations in Huntington's disease

    Get PDF
    Background: Huge advances have been made in understanding and addressing confounds in diffusion MRI data to quantify white matter microstructure. However, there has been a lag in applying these advances in clinical research. Some confounds are more pronounced in HD which impedes data quality and interpretability of patient-control differences. This study presents an optimised analysis pipeline and addresses specific confounds in a HD patient cohort. Method: 15 HD gene-positive and 13 matched control participants were scanned on a 3T MRI system with two diffusion MRI sequences. An optimised post processing pipeline included motion, eddy current and EPI correction, rotation of the B matrix, free water elimination ( FWE ) and tractography analysis using an algorithm capable of reconstructing crossing fibres. The corpus callosum was examined using both a region-of-interest and a deterministic tractography approach, using both conventional diffusion tensor imaging ( DTI )-based and spherical deconvolution analyses. Results: Correcting for CSF contamination significantly altered microstructural metrics and the detection of group differences. Reconstructing the corpus callosum using spherical deconvolution produced a more complete reconstruction with greater sensitivity to group differences, compared to DTI-based tractography. Tissue volume fraction ( TVF ) was reduced in HD participants and was more sensitive to disease burden compared to DTI metrics. Conclusion: Addressing confounds in diffusion MR data results in more valid, anatomically faithful white matter tract reconstructions with reduced within-group variance. TVF is recommended as a complementary metric, providing insight into the relationship with clinical symptoms in HD not fully captured by conventional DTI metrics

    Determination of magnetic resonance imaging biomarkers for multiple sclerosis treatment effects

    Get PDF

    Diffusion Tensor Imaging

    Full text link
    This unit provides step‐by‐step instructions on how to perform diffusion tensor imaging (DTI) in a clinical setting. A brief introduction on DTI techniques and current clinical applications is also presented. Additional technical details, practical considerations, and anticipated results are discussed in a commentary section.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/145355/1/cpmia0604.pd

    Dual-encoded magnetization transfer and diffusion imaging and its application to tract-specific microstructure mapping

    Full text link
    We present a novel dual-encoded magnetization transfer (MT) and diffusion-weighted sequence and demonstrate its potential to resolve distinct properties of white matter fiber tracts at the sub-voxel level. The sequence was designed and optimized for maximal MT contrast efficiency. The resulting whole brain 2.6 mm isotropic protocol to measure tract-specific MT ratio (MTR) has a scan time under 7 minutes. Ten healthy subjects were scanned twice to assess repeatability. Two different analysis methods were contrasted: a technique to extract tract-specific MTR using Convex Optimization Modeling for Microstructure Informed Tractography (COMMIT), a global optimization technique; and conventional MTR tractometry. The results demonstrate that the tract-specific method can reliably resolve the MT ratios of major white matter fiber pathways and is less affected by partial volume effects than conventional multi-modal tractometry. Dual-encoded MT and diffusion is expected to both increase the sensitivity to microstructure alterations of specific tracts due to disease, ageing or learning, as well as lead to weighted structural connectomes with more anatomical specificity.Comment: 26 pages, 7 figure
    corecore