161 research outputs found

    Survivable mesh-network design & optimization to support multiple QoP service classes

    Get PDF
    Every second, vast amounts of data are transferred over communication systems around the world, and as a result, the demands on optical infrastructures are extending beyond the traditional, ring-based architecture. The range of content and services available from the Internet is increasing, and network operations are constantly under pressure to expand their optical networks in order to keep pace with the ever increasing demand for higher speed and more reliable links

    Survivability through pre-configured protection in optical mesh networks

    Get PDF
    Network survivability is a very important issue, especially in optical networks that carry huge amount of traffic. Network failures which may be caused by human errors, malfunctional systems and natural disaster (eg. Earthquakes and lightening storms), have occurred quite frequently and sometimes with unpredictable consequences. Survivability is defined as the ability of the network to maintain the continuity of service against failures of network components. Pre-configuration and dynamic restoration are two schemes for network survivability. For each scheme, survivability algorithms can be applied at either Optical Channel sublayer (Och) known as link-based. Or, Optical Multiplex Section sublayer (OMS) known as path-based. The efficiency of survivability algorithms can be assessed through such criteria as capacity efficiency, restoration time and quality service. Dynamic restoration is more efficient than pre-configuration in terms of capacity resource utilization, but restoration time is longer and 100% service recovery cannot be guaranteed because sufficient spare capacity may not be available at the time of failures. Similarly, path-based survivability offers a high performance scheme for utilizing capacity resource, but restoration time is longer than link based survivability

    Protection and restoration algorithms for WDM optical networks

    Get PDF
    Currently, Wavelength Division Multiplexing (WDM) optical networks play a major role in supporting the outbreak in demand for high bandwidth networks driven by the Internet. It can be a catastrophe to millions of users if a single optical fiber is somehow cut off from the network, and there is no protection in the design of the logical topology for a restorative mechanism. Many protection and restoration algorithms are needed to prevent, reroute, and/or reconfigure the network from damages in such a situation. In the past few years, many works dealing with these issues have been reported. Those algorithms can be implemented in many ways with several different objective functions such as a minimization of protection path lengths, a minimization of restoration times, a maximization of restored bandwidths, etc. This thesis investigates, analyzes and compares the algorithms that are mainly aimed to guarantee or maximize the amount of remaining bandwidth still working over a damaged network. The parameters considered in this thesis are the routing computation and implementation mechanism, routing characteristics, recovering computation timing, network capacity assignment, and implementing layer. Performance analysis in terms of the restoration efficiency, the hop length, the percentage of bandwidth guaranteed, the network capacity utilization, and the blocking probability is conducted and evaluated

    LOGICAL TOPOLOGY DESIGN FOR SURVIVABILITY IN IP-OVER-WDM NETWORKS

    Get PDF
    IP-over-WDM networks integrate Wavelength Division Multiplexing (WDM) technology with Internet Protocol (IP) and are widely regarded as the architecture for the next generation high-speed Internet. The problem of designing an IP-over-WDM network can be modeled as an embedding problem in which an IP network is embedded in a WDM network by establishing all optical paths between IP routers in the WDM network. Survivability is considered a vital requirement in such networks, which can be achieved by embedding the IP network in the WDM network in such a way that the IP network stays connected in the presence of failure or failures in the WDM network. Otherwise, some of the IP routers may not be reachable.The problem can be formulated as an Integer Linear Program (ILP), which can be solved optimally but is NP-complete. In this thesis, we have studied and proposed various efficient algorithms that can be used to make IP-over-WDM networks survivable in the presence of a single WDM link (optical fiber cable or cables) failure.First we evaluate an existing approach, named Survivable Mapping Algorithm by Ring Trimming (SMART), which provides survivability for an entire network by successively considering pieces of the network. The evaluation provides much insight into the approach, which allowed us to propose several enhancements. The modified approach with enhancements leads to better performance than the original SMART.We have also proposed a hybrid algorithm that guarantees survivability, if the IP and the WDM networks are at least 2-edge connected. The algorithm uses a combination of proactive (protection) and reactive (restoration) mechanisms to obtain a survivable embedding for any given IP network in any given WDM network.Circuits and cutsets are dual concepts. SMART approach is based on circuits. The question then arises whether there exists a dual methodology based on cutsets. We investigate this question and provide much needed insight. We provide a unified algorithmic framework based on circuits and cutsets. We also provide new methodologies based on cutsets and give a new proof of correctnessof SMART. We also develop a method based on incidence sets that are a special case of cutsets. Noting that for some IP networks a survivable embedding may not exist, the option of adding new IP links is pursued. Comparative evaluations of all the algorithms through extensive simulations are also given in this dissertation

    Design and provisioning of WDM networks for traffic grooming

    Get PDF
    Wavelength Division Multiplexing (WDM) is the most viable technique for utilizing the enormous amounts of bandwidth inherently available in optical fibers. However, the bandwidth offered by a single wavelength in WDM networks is on the order of tens of Gigabits per second, while most of the applications\u27 bandwidth requirements are still subwavelength. Therefore, cost-effective design and provisioning of WDM networks require that traffic from different sessions share bandwidth of a single wavelength by employing electronic multiplexing at higher layers. This is known as traffic grooming. Optical networks supporting traffic grooming are usually designed in a way such that the cost of the higher layer equipment used to support a given traffic matrix is reduced. In this thesis, we propose a number of optimal and heuristic solutions for the design and provisioning of optical networks for traffic grooming with an objective of network cost reduction. In doing so, we address several practical issues. Specifically, we address the design and provisioning of WDM networks on unidirectional and bidirectional rings for arbitrary unicast traffic grooming, and on mesh topologies for arbitrary multipoint traffic grooming. In multipoint traffic grooming, we address both multicast and many-to-one traffic grooming problems. We provide a unified frame work for optimal and approximate network dimensioning and channel provisioning for the generic multicast traffic grooming problem, as well as some variants of the problem. For many-to-one traffic grooming we propose optimal as well as heuristic solutions. Optimal formulations which are inherently non-linear are mapped to an optimal linear formulation. In the heuristic solutions, we employ different problem specific search strategies to explore the solution space. We provide a number of experimental results to show the efficacy of our proposed techniques for the traffic grooming problem in WDM networks

    Maximizing Reliability in WDM Networks Through Lightpath Routing

    Get PDF
    We study the reliability maximization problem in wavelength division multiplexing (WDM) networks with random link failures. Reliability in these networks is defined as the probability that the logical network is connected, and it is determined by the underlying lightpath routing, network topologies, and the link failure probability. By introducing the notion of lexicographical ordering for lightpath routings, we characterize precise optimization criteria for maximum reliability in the low failure probability regime. Based on the optimization criteria, we develop lightpath routing algorithms that maximize the reliability, and logical topology augmentation algorithms for further improving reliability. We also study the reliability maximization problem in the high failure probability regime.National Science Foundation (U.S.) (Grant CNS-0830961)National Science Foundation (U.S.) (Grant CNS-1017800)United States. Defense Threat Reduction Agency (Grant HDTRA1-07-1-0004)United States. Defense Threat Reduction Agency (Grant HDTRA-09-1-0050

    WDM optical network: Efficient techniques for fault-tolerant logic topology design

    Get PDF
    The rapid increase of bandwidth intensive applications has created an unprecedented demand for bandwidth on the Internet. With recent advances in optical technologies, especially the development of wavelength division multiplexing (WDM) techniques, the amount of raw bandwidth available on the fibre links has increased by several orders of magnitude. Due to the large volume of traffic these optical networks carry, there is one very important issue---design of robust networks that can survive faults. Two common mechanisms to protect against the network failure: one is protection and another is restoration. My research focuses on studying the efficient techniques for fault-tolerant logical topology design for the WDM optical network. In my research, the goal is to determine a topology that accommodates the entire traffic flow and provides protection against any single fiber failure. I solve the problem by formulating the logical topology design problem as a MILP optimization problem, which generates the optimum logical topology and the optimum traffic routing scheme. Paper copy at Leddy Library: Theses & Major Papers - Basement, West Bldg. / Call Number: Thesis2004 .S54. Source: Masters Abstracts International, Volume: 43-01, page: 0244. Adviser: Arunita Jaekel. Thesis (M.Sc.)--University of Windsor (Canada), 2004
    corecore