19 research outputs found

    Survivable virtual network mapping with content connectivity against multiple link failures in optical metro networks

    Get PDF
    Network connectivity, i.e., the reachability of any network node from all other nodes, is often considered as the default network survivability metric against failures. However, in the case of a large-scale disaster disconnecting multiple network components, network connectivity may not be achievable. On the other hand, with the shifting service paradigm towards the cloud in today's networks, most services can still be provided as long as at least a content replica is available in all disconnected network partitions. As a result, the concept of content connectivity has been introduced as a new network survivability metric under a large-scale disaster. Content connectivity is defined as the reachability of content from every node in a network under a specific failure scenario. In this work, we investigate how to ensure content connectivity in optical metro networks. We derive necessary and sufficient conditions and develop what we believe to be a novel mathematical formulation to map a virtual network over a physical network such that content connectivity for the virtual network is ensured against multiple link failures in the physical network. In our numerical results, obtained under various network settings, we compare the performance of mapping with content connectivity and network connectivity and show that mapping with content connectivity can guarantee higher survivability, lower network bandwidth utilization, and significant improvement of service availability

    Enabling Technology in Optical Fiber Communications: From Device, System to Networking

    Get PDF
    This book explores the enabling technology in optical fiber communications. It focuses on the state-of-the-art advances from fundamental theories, devices, and subsystems to networking applications as well as future perspectives of optical fiber communications. The topics cover include integrated photonics, fiber optics, fiber and free-space optical communications, and optical networking

    An Embryonics Inspired Architecture for Resilient Decentralised Cloud Service Delivery

    Get PDF
    Data-driven artificial intelligence applications arising from Internet of Things technologies can have profound wide-reaching societal benefits at the cross-section of the cyber and physical domains. Usecases are expanding rapidly. For example, smart-homes and smart-buildings provide intelligent monitoring, resource optimisation, safety, and security for their inhabitants. Smart cities can manage transport, waste, energy, and crime on large scales. Whilst smart-manufacturing can autonomously produce goods through the self-management of factories and logistics. As these use-cases expand further, the requirement to ensure data is processed accurately and timely is ever crucial, as many of these applications are safety critical. Where loss off life and economic damage is a likely possibility in the event of system failure. While the typical service delivery paradigm, cloud computing, is strong due to operating upon economies of scale, their physical proximity to these applications creates network latency which is incompatible with these safety critical applications. To complicate matters further, the environments they operate in are becoming increasingly hostile. With resource-constrained and mobile wireless networking, commonplace. These issues drive the need for new service delivery architectures which operate closer to, or even upon, the network devices, sensors and actuators which compose these IoT applications at the network edge. These hostile and resource constrained environments require adaptation of traditional cloud service delivery models to these decentralised mobile and wireless environments. Such architectures need to provide persistent service delivery within the face of a variety of internal and external changes or: resilient decentralised cloud service delivery. While the current state of the art proposes numerous techniques to enhance the resilience of services in this manner, none provide an architecture which is capable of providing data processing services in a cloud manner which is inherently resilient. Adopting techniques from autonomic computing, whose characteristics are resilient by nature, this thesis presents a biologically-inspired platform modelled on embryonics. Embryonic systems have an ability to self-heal and self-organise whilst showing capacity to support decentralised data processing. An initial model for embryonics-inspired resilient decentralised cloud service delivery is derived according to both the decentralised cloud, and resilience requirements given for this work. Next, this model is simulated using cellular automata, which illustrate the embryonic concept’s ability to provide self-healing service delivery under varying system component loss. This highlights optimisation techniques, including: application complexity bounds, differentiation optimisation, self-healing aggression, and varying system starting conditions. All attributes of which can be adjusted to vary the resilience performance of the system depending upon different resource capabilities and environmental hostilities. Next, a proof-of-concept implementation is developed and validated which illustrates the efficacy of the solution. This proof-of-concept is evaluated on a larger scale where batches of tests highlighted the different performance criteria and constraints of the system. One key finding was the considerable quantity of redundant messages produced under successful scenarios which were helpful in terms of enabling resilience yet could increase network contention. Therefore balancing these attributes are important according to use-case. Finally, graph-based resilience algorithms were executed across all tests to understand the structural resilience of the system and whether this enabled suitable measurements or prediction of the application’s resilience. Interestingly this study highlighted that although the system was not considered to be structurally resilient, the applications were still being executed in the face of many continued component failures. This highlighted that the autonomic embryonic functionality developed was succeeding in executing applications resiliently. Illustrating that structural and application resilience do not necessarily coincide. Additionally, one graph metric, assortativity, was highlighted as being predictive of application resilience, although not structural resilience

    Large space structures and systems in the space station era: A bibliography with indexes (supplement 04)

    Get PDF
    Bibliographies and abstracts are listed for 1211 reports, articles, and other documents introduced into the NASA scientific and technical information system between 1 Jul. and 30 Dec. 1991. Its purpose is to provide helpful information to the researcher, manager, and designer in technology development and mission design according to system, interactive analysis and design, structural concepts and control systems, electronics, advanced materials, assembly concepts, propulsion, and solar power satellite systems

    Aeronautical engineering: A continuing bibliography with indexes (supplement 240)

    Get PDF
    This bibliography lists 629 reports, articles, and other documents introduced into the NASA scientific and technical information system in May, 1989. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics

    Using MapReduce Streaming for Distributed Life Simulation on the Cloud

    Get PDF
    Distributed software simulations are indispensable in the study of large-scale life models but often require the use of technically complex lower-level distributed computing frameworks, such as MPI. We propose to overcome the complexity challenge by applying the emerging MapReduce (MR) model to distributed life simulations and by running such simulations on the cloud. Technically, we design optimized MR streaming algorithms for discrete and continuous versions of Conway’s life according to a general MR streaming pattern. We chose life because it is simple enough as a testbed for MR’s applicability to a-life simulations and general enough to make our results applicable to various lattice-based a-life models. We implement and empirically evaluate our algorithms’ performance on Amazon’s Elastic MR cloud. Our experiments demonstrate that a single MR optimization technique called strip partitioning can reduce the execution time of continuous life simulations by 64%. To the best of our knowledge, we are the first to propose and evaluate MR streaming algorithms for lattice-based simulations. Our algorithms can serve as prototypes in the development of novel MR simulation algorithms for large-scale lattice-based a-life models.https://digitalcommons.chapman.edu/scs_books/1014/thumbnail.jp

    Abstracts on Radio Direction Finding (1899 - 1995)

    Get PDF
    The files on this record represent the various databases that originally composed the CD-ROM issue of "Abstracts on Radio Direction Finding" database, which is now part of the Dudley Knox Library's Abstracts and Selected Full Text Documents on Radio Direction Finding (1899 - 1995) Collection. (See Calhoun record https://calhoun.nps.edu/handle/10945/57364 for further information on this collection and the bibliography). Due to issues of technological obsolescence preventing current and future audiences from accessing the bibliography, DKL exported and converted into the three files on this record the various databases contained in the CD-ROM. The contents of these files are: 1) RDFA_CompleteBibliography_xls.zip [RDFA_CompleteBibliography.xls: Metadata for the complete bibliography, in Excel 97-2003 Workbook format; RDFA_Glossary.xls: Glossary of terms, in Excel 97-2003 Workbookformat; RDFA_Biographies.xls: Biographies of leading figures, in Excel 97-2003 Workbook format]; 2) RDFA_CompleteBibliography_csv.zip [RDFA_CompleteBibliography.TXT: Metadata for the complete bibliography, in CSV format; RDFA_Glossary.TXT: Glossary of terms, in CSV format; RDFA_Biographies.TXT: Biographies of leading figures, in CSV format]; 3) RDFA_CompleteBibliography.pdf: A human readable display of the bibliographic data, as a means of double-checking any possible deviations due to conversion

    Optoelectronics – Devices and Applications

    Get PDF
    Optoelectronics - Devices and Applications is the second part of an edited anthology on the multifaced areas of optoelectronics by a selected group of authors including promising novices to experts in the field. Photonics and optoelectronics are making an impact multiple times as the semiconductor revolution made on the quality of our life. In telecommunication, entertainment devices, computational techniques, clean energy harvesting, medical instrumentation, materials and device characterization and scores of other areas of R&D the science of optics and electronics get coupled by fine technology advances to make incredibly large strides. The technology of light has advanced to a stage where disciplines sans boundaries are finding it indispensable. New design concepts are fast emerging and being tested and applications developed in an unimaginable pace and speed. The wide spectrum of topics related to optoelectronics and photonics presented here is sure to make this collection of essays extremely useful to students and other stake holders in the field such as researchers and device designers

    Aeronautical engineering: A cumulative index to a continuing bibliography (supplement 248)

    Get PDF
    This publication is a cumulative index to the abstracts contained in Supplements 236 through 247 of Aeronautical Engineering: A Continuing Bibliography. The bibliographic series is compiled through the cooperative efforts of the American Institute of Aeronautics and Astronautics (AIAA) and the National Aeronautics and Space Administration (NASA). Seven indexes are included -- subject, personal author, corporate source, foreign technology, contract number, report number and accession number
    corecore