1,449 research outputs found

    Surveying Position Based Routing Protocols for Wireless Sensor and Ad-hoc Networks

    Get PDF
    A focus of the scientific community is to design network oriented position-based routing protocols and this has resulted in a very high number of algorithms, different in approach and performance and each suited only to particular applications. However, though numerous, very few position-based algorithms have actually been adopted for commercial purposes. This article is a survey of almost 50 position-based routing protocols and it comes as an aid in the implementation of this type of routing in various applications which may need to consider the advantages and pitfalls of position-based routing. An emphasis is made on geographic routing, whose notion is clarified as a more restrictive and more efficient type of position-based routing. The protocols are therefore divided into geographic and non-geographic routing protocols and each is characterized according to a number of network design issues and presented in a comparative manner from multiple points of view. The main requirements of current general applications are also studied and, depending on these, the survey proposes a number of protocols for use in particular application areas. This aims to help both researchers and potential users assess and choose the protocol best suited to their interest

    Robotic Wireless Sensor Networks

    Full text link
    In this chapter, we present a literature survey of an emerging, cutting-edge, and multi-disciplinary field of research at the intersection of Robotics and Wireless Sensor Networks (WSN) which we refer to as Robotic Wireless Sensor Networks (RWSN). We define a RWSN as an autonomous networked multi-robot system that aims to achieve certain sensing goals while meeting and maintaining certain communication performance requirements, through cooperative control, learning and adaptation. While both of the component areas, i.e., Robotics and WSN, are very well-known and well-explored, there exist a whole set of new opportunities and research directions at the intersection of these two fields which are relatively or even completely unexplored. One such example would be the use of a set of robotic routers to set up a temporary communication path between a sender and a receiver that uses the controlled mobility to the advantage of packet routing. We find that there exist only a limited number of articles to be directly categorized as RWSN related works whereas there exist a range of articles in the robotics and the WSN literature that are also relevant to this new field of research. To connect the dots, we first identify the core problems and research trends related to RWSN such as connectivity, localization, routing, and robust flow of information. Next, we classify the existing research on RWSN as well as the relevant state-of-the-arts from robotics and WSN community according to the problems and trends identified in the first step. Lastly, we analyze what is missing in the existing literature, and identify topics that require more research attention in the future

    Proactive Highly Ambulatory Sensor Routing (PHASeR) protocol for mobile wireless sensor networks

    Get PDF
    This paper presents a novel multihop routing protocol for mobile wireless sensor networks called PHASeR (Proactive Highly Ambulatory Sensor Routing). The proposed protocol uses a simple hop-count metric to enable the dynamic and robust routing of data towards the sink in mobile environments. It is motivated by the application of radiation mapping by unmanned vehicles, which requires the reliable and timely delivery of regular measurements to the sink. PHASeR maintains a gradient metric in mobile environments by using a global TDMA MAC layer. It also uses the technique of blind forwarding to pass messages through the network in a multipath manner. PHASeR is analysed mathematically based on packet delivery ratio, average packet delay, throughput and overhead. It is then simulated with varying mobility, scalability and traffic loads. The protocol gives good results over all measures, which suggests that it may also be suitable for a wider array of emerging applications

    Review Paper Opportunistics Routing Protocol For Performance Enhancement In Wsn

    Get PDF
    In Remote Sensor Network, sensor hub are sent in application territory to shape organize. Data about the physical and synthetic marvel are gathered by sensor hub and exchange to the sink hub for additionally preparing. Sharp Routing convention is required to fulfill the errand of exchanging data. Opportunistic routing is used for wireless multi-hop network .The main features of Opportunistic routing is coordination and selection of forwarding node to transfer the packets to the sink node. Opportunistic routing enables the multiple paths and dynamics the relay selection in wireless multihop networks with higher node density .In order to enhance the performance of relay node Opportunistic routing collaborates all the sensor nodes in the path while forwarding the data packets

    Route discovery based on energy-distance aware routing scheme for MANET

    Get PDF
    Route discovery proses in a Mobile Ad hoc Network (MANET) is challenging due to the limitation of energy at each network node. The energy constraint limits network connection lifetime thus affecting the routing process. Therefore, it is necessary for each node in the network to calculate routing factor in terms of energy and distance in deciding optimal candidate relay nodes needed to forward packets. This study proposes a new route discovery mechanism called the Energy-Distance Routing Aware (EDRA) that determines the selection of nodes during route discovery process to improve the network connection lifetime. This mechanism comprises of three schemes namely the Energy-Distance Factor Aware (EDFA), the Energy-Distance Forward Strategy (EDFS), and the Energy-Aware Route Selection (EARS). The EDFA scheme begins by calculating each nodes energy level (ei) and the distance (di) to the neighbouring nodes to produce the energy-distance factor value used in selecting the relay nodes. Next, the EDFS scheme forwards route request packets within discovery area of relay nodes based on the number of nodes. Then, the EARS scheme selects stable routing path utilising updated status information from EDFA and EDFS. The evaluation of EDRA mechanism is performed using network simulator Ns2 based on a defined set of performance metrics, scenarios and network scalability. The experimental results show that the EDRA gains significant improvement in the network connection lifetime when compared to those of the similar mechanisms, namely the AODV and the DREAM. EDRA also optimises energy consumption by utilising efficient forwarding decisions on varying scale of network nodes. Moreover, EDRA maximizes network connection lifetime while preserving throughput and packet drop ratio. This study contributes toward developing an efficient energy-aware routing to sustain longer network connection lifetime in MANET environment. The contribution is significant in promoting the use of green and sustainable next generation network technology

    Drone’s node placement algorithm with routing protocols to enhance surveillance

    Get PDF
    Flying ad-hoc network (FANET) is characterized by key component features such as communication scheme, energy awareness, and task distribution. In this research, a surveillance space considering standard petroleum pipe was created with three drones viz: drone 1 (D1), master drone (DM), and drone 2 (D2) to survey as FANET. DM aggregate packets from D1, D2 and communicate with the static ground control station (SGCS). The starting point of the three drones and their trajectories during deployment were calculated and simulated. Selection of DM, D1, and D2 was done using battery level before take-off. Simulation results show take-off time difference which depends on the distance of each drone to the SGCS during deployment. D1 take-off first, while DM and D2 followed after 0.0704 and 0.1314 ms respectively. The position-oriented routing protocols results indicated variation of information flow within time notch due to variation in the density of the transmitted packets. Packets delivery periods are 0.00136×103 sec, 0.00110×103 sec, and 0.00246×103 sec for time notch 1, 2, and aggregating time notch respectively. From the results obtained, two algorithms were used successfully in deploying the drone

    An Individual Node Delay Based Efficient Power Aware Routing Protocol for Wireless Heterogeneous Sensor Networks

    Get PDF
    Miscellaneous node transmission ranges builds up Wireless Heterogeneous Sensor Networks (WHSNs). Designing an efficient, reliable and scalable routing protocol for WHSNs with intermittent asymmetric links is a challenging task. In this paper, we propose an efficient power aware routing scheme for WHSNs, which can provide loop-free, stateless, source-to-sink routing scheme without using prior information about neighbor. It uses both symmetric and asymmetric links to forward data from source to sink. The source node broadcasts location information to all its neighbor nodes. Each neighbor node calculates a delay slot based on the information obtained from the source to forward its power value to it. The node that has a minimum delay slot forwards the power earlier than the other nodes during contention phase and the delay slot is used to suppress the selection of unsuitable low-power nodes at that time. We also prove that our protocol is loop-free assuming no failures in greedy forwarding. By simulations we show that our protocol significantly outperforms the existing protocols in WHSNs
    • …
    corecore