88,514 research outputs found

    A Survey of Methods for Addressing Class Imbalance in Deep-Learning Based Natural Language Processing

    Full text link
    Many natural language processing (NLP) tasks are naturally imbalanced, as some target categories occur much more frequently than others in the real world. In such scenarios, current NLP models still tend to perform poorly on less frequent classes. Addressing class imbalance in NLP is an active research topic, yet, finding a good approach for a particular task and imbalance scenario is difficult. With this survey, the first overview on class imbalance in deep-learning based NLP, we provide guidance for NLP researchers and practitioners dealing with imbalanced data. We first discuss various types of controlled and real-world class imbalance. Our survey then covers approaches that have been explicitly proposed for class-imbalanced NLP tasks or, originating in the computer vision community, have been evaluated on them. We organize the methods by whether they are based on sampling, data augmentation, choice of loss function, staged learning, or model design. Finally, we discuss open problems such as dealing with multi-label scenarios, and propose systematic benchmarking and reporting in order to move forward on this problem as a community

    Machine Learning and Integrative Analysis of Biomedical Big Data.

    Get PDF
    Recent developments in high-throughput technologies have accelerated the accumulation of massive amounts of omics data from multiple sources: genome, epigenome, transcriptome, proteome, metabolome, etc. Traditionally, data from each source (e.g., genome) is analyzed in isolation using statistical and machine learning (ML) methods. Integrative analysis of multi-omics and clinical data is key to new biomedical discoveries and advancements in precision medicine. However, data integration poses new computational challenges as well as exacerbates the ones associated with single-omics studies. Specialized computational approaches are required to effectively and efficiently perform integrative analysis of biomedical data acquired from diverse modalities. In this review, we discuss state-of-the-art ML-based approaches for tackling five specific computational challenges associated with integrative analysis: curse of dimensionality, data heterogeneity, missing data, class imbalance and scalability issues
    • …
    corecore