39 research outputs found

    Bio-Inspired Robotics

    Get PDF
    Modern robotic technologies have enabled robots to operate in a variety of unstructured and dynamically-changing environments, in addition to traditional structured environments. Robots have, thus, become an important element in our everyday lives. One key approach to develop such intelligent and autonomous robots is to draw inspiration from biological systems. Biological structure, mechanisms, and underlying principles have the potential to provide new ideas to support the improvement of conventional robotic designs and control. Such biological principles usually originate from animal or even plant models, for robots, which can sense, think, walk, swim, crawl, jump or even fly. Thus, it is believed that these bio-inspired methods are becoming increasingly important in the face of complex applications. Bio-inspired robotics is leading to the study of innovative structures and computing with sensory–motor coordination and learning to achieve intelligence, flexibility, stability, and adaptation for emergent robotic applications, such as manipulation, learning, and control. This Special Issue invites original papers of innovative ideas and concepts, new discoveries and improvements, and novel applications and business models relevant to the selected topics of ``Bio-Inspired Robotics''. Bio-Inspired Robotics is a broad topic and an ongoing expanding field. This Special Issue collates 30 papers that address some of the important challenges and opportunities in this broad and expanding field

    An overview on structural health monitoring: From the current state-of-the-art to new bio-inspired sensing paradigms

    Get PDF
    In the last decades, the field of structural health monitoring (SHM) has grown exponentially. Yet, several technical constraints persist, which are preventing full realization of its potential. To upgrade current state-of-the-art technologies, researchers have started to look at nature’s creations giving rise to a new field called ‘biomimetics’, which operates across the border between living and non-living systems. The highly optimised and time-tested performance of biological assemblies keeps on inspiring the development of bio-inspired artificial counterparts that can potentially outperform conventional systems. After a critical appraisal on the current status of SHM, this paper presents a review of selected works related to neural, cochlea and immune-inspired algorithms implemented in the field of SHM, including a brief survey of the advancements of bio-inspired sensor technology for the purpose of SHM. In parallel to this engineering progress, a more in-depth understanding of the most suitable biological patterns to be transferred into multimodal SHM systems is fundamental to foster new scientific breakthroughs. Hence, grounded in the dissection of three selected human biological systems, a framework for new bio-inspired sensing paradigms aimed at guiding the identification of tailored attributes to transplant from nature to SHM is outlined.info:eu-repo/semantics/acceptedVersio

    Inherently Elastic Actuation for Soft Robotics

    Get PDF

    Modular soft pneumatic actuator system design for compliance matching

    Get PDF
    The future of robotics is personal. Never before has technology been as pervasive as it is today, with advanced mobile electronics hardware and multi-level network connectivity pushing âsmartâ devices deeper into our daily lives through home automation systems, virtual assistants, and wearable activity monitoring. As the suite of personal technology around us continues to grow in this way, augmenting and offloading the burden of routine activities of daily living, the notion that this trend will extend to robotics seems inevitable. Transitioning robots from their current principal domain of industrial factory settings to domestic, workplace, or public environments is not simply a matter of relocation or reprogramming, however. The key differences between âtraditionalâ types of robots and those which would best serve personal, proximal, human interactive applications demand a new approach to their design. Chief among these are requirements for safety, adaptability, reliability, reconfigurability, and to a more practical extent, usability. These properties frame the context and objectives of my thesis work, which seeks to provide solutions and answers to not only how these features might be achieved in personal robotic systems, but as well what benefits they can afford. I approach the investigation of these questions from a perspective of compliance matching of hardware systems to their applications, by providing methods to achieve mechanical attributes complimentary to their environment and end-use. These features are fundamental to the burgeoning field of Soft Robotics, wherein flexible, compliant materials are used as the basis for the structure, actuation, sensing, and control of complete robotic systems. Combined with pressurized air as a power source, soft pneumatic actuator (SPA) based systems offers new and novel methods of exploiting the intrinsic compliance of soft material components in robotic systems. While this strategy seems to answer many of the needs for human-safe robotic applications, it also brings new questions and challenges: What are the needs and applications personal robots may best serve? Are soft pneumatic actuators capable of these tasks, or âusefulâ work output and performance? How can SPA based systems be applied to provide complex functionality needed for operation in diverse, real-world environments? What are the theoretical and practical challenges in implementing scalable, multiple degrees of freedom systems, and how can they be overcome? I present solutions to these problems in my thesis work, elucidated through scientific design, testing and evaluation of robotic prototypes which leverage and demonstrate three key features: 1) Intrinsic compliance: provided by passive elastic and flexible component material properties, 2) Extrinsic compliance: rendered through high number of independent, controllable degrees of freedom, and 3) Complementary design: exhibited by modular, plug and play architectures which combine both attributes to achieve compliant systems. Through these core projects and others listed below I have been engaged in soft robotic technology, its application, and solutions to the challenges which are critical to providing a path forward within the soft robotics field, as well as for the future of personal robotics as a whole toward creating a better society

    Design and Fabrication of Soft 3D Printed Actuators: Expanding Soft Robotics Applications

    Get PDF
    Soft pneumatic actuators are ideal for soft robotic applications due to their innate compliance and high power-weight ratios. Presently, the majority of soft pneumatic actuators are used to create bending motions, with very few able to produce significant linear movements. Fewer can actively produce strains in multiple directions. The further development of these actuators is limited by their fabrication methods, specifically the lack of suitable stretchable materials for 3D printing. In this thesis, a new highly elastic resin for digital light projection 3D printers, designated ElastAMBER, is developed and evaluated, which shows improvements over previously synthesised elastic resins. It is prepared from a di-functional polyether urethane acrylate oligomer and a blend of two different diluent monomers. ElastAMBER exhibits a viscosity of 1000 mPa.s at 40 °C, allowing easy printing at near room temperatures. The 3D-printed components present an elastomeric behaviour with a maximum extension ratio of 4.02 ± 0.06, an ultimate tensile strength of (1.23 ± 0.09) MPa, low hysteresis, and negligible viscoelastic relaxation

    Plantoid: plant inspired robot for subsoil exploration and environmental monitoring

    Get PDF
    La Biorobotica è un nuovo approccio nella realizzazione di robot che unisce diverse discipline come Robotica e Scienze Naturali. Il concetto di Biorobotica è stato identificato per molti anni come ispirazione dal mondo animale. In questa tesi, questo paradigma è stato esteso per la prima volta al mondo vegetale. Le piante sono un organismo affascinante con inaspettate capacità. Sono organismi dinamici e altamente sensibili, in grado di esplorare il terreno alla ricerca di nutrienti e di valutare con precisione la loro situazione per una gestione ottimale delle risorse. L'obiettivo di questa tesi è di contribuire alla realizzazione di un robot ispirato alle piante, un plantoide. Il robot plantoide comprende sistemi di radici e rami e deve essere in grado di monitorare l'ambiente sia in aria sia nel sottosuolo. Questi robot ispirati alle piante saranno utilizzati per applicazioni specifiche, come il monitoraggio in situ di parametri chimici, la ricerca di acqua in agricoltura, l'ancoraggio e per la comprensione scientifica delle capacità e comportamenti delle piante stesse mediante la costruzione di modelli fisici. In questa tesi sono stati affrontati diversi aspetti di questa innovativa piattaforma robotica: prima di tutto, lo studio delle piante, le caratteristiche e le tecnologie che consentono di progettare e sviluppare il sistema robotico. Il sistema proposto può essere facilmente suddiviso in due sezioni principali, la parte aerea e la parte radicale (che sta nel sottosuolo). Per la parte che si trova nel sottosuolo, l'attività è stata incentrata sulla realizzazione di un sistema meccatronico miniaturizzato che imita il comportamento dell’apice radicale della pianta. Le piante mostrano una peculiare direzione crescita in risposta a stimoli esterni, come la luce (phototropism), la gravità (gravitropism), il tatto (thigmotropism) o il gradiente di umidità (hydrotropism). I tropismsi spesso interagiscono tra loro, e la crescita finale della pianta è influenzata da tali interazioni. Al fine di imitare le potenti prestazioni del sistema radicale delle piante, un nuovo attuatore è stato proposto. Questo attuatore è basato sul principio osmotico (attuatore osmotico) e, diversamente dagli attuatori allo stato dell’arte basati sul principio osmotico, è stato progettato in modo da avere una reazione reversibile. Questo attuatore permette di eseguire l'allungamento e il direzionamento dell’ apice radicale, generando elevate forze con un basso consumo di energia (con movimenti nella scala temporale della pianta). Studi teorici su questo attuatore mostrano interessanti prestazioni in termini di pressione di attuazione (superiore a 20 atm), con potenza nell'ordine di alcuni mW e con tempi di attuazione nell’ordine delle ore. L’apice radicale robotico è stato progettato per essere dotato di sensori (gravità e umidità) per imitare le capacità di analisi delle piante, e con l’attuatore osmotico per guidare la crescita nella direzione corretta. Un microcontrollore integrato controlla il comportamento e il direzionamento sulla base delle informazioni provenienti dai sensori. Riguardo la parte aerea, l'attività in questa tesi è stata incentrata sulla realizzazione di una sorta di modulo di monitoraggio ambientale, al fine di imitare l'elevata capacità sensoristica delle piante. Questa parte è stata progettata e realizzata in un modo più tradizionale, senza tentare di imitare completamente il comportamento delle piante, ma prendendo ispirazione dalle caratteristiche fondamentali (recupero dell’energia, ampia capacità di monitoraggio e comunicazione). Al fine di integrare una vasta quantità di sensori, è stata sviluppata un’innovativa interfaccia che garantisce il condizionamento di sensori, con capacità plug-and-play e basso consumo energetico. Diversi aspetti del plantoid non sono ancora stati affrontati e saranno parte dei lavori futuri. In particolare, il meccanismo di crescita delle radici (alcune possibili soluzioni sono state proposte e spiegate in questa tesi) e l'integrazione di sensori chimici nell’apice radicale.Biorobotics is a novel approach in the realization of robot that merges different disciplines as Robotic and Natural Science. The concept of biorobotics has been identified for many years as inspiration from the animal world. In this thesis this paradigm has been extended for the first time to the plant world. Plants are an amazing organism with unexpected capabilities. They are dynamic and highly sensitive organisms, actively and competitively foraging for limited resources both above and below ground, and they are also organisms which accurately compute their circumstances, use sophisticated cost–benefit analysis, and take defined actions to mitigate and control diverse environmental insults. The objective of this thesis is to contribute to the realization of a robot inspired to plants, a plantoid. The plantoid robot includes root and shoot systems and should be able to explore and monitoring the environment both in the air and underground. These plant-inspired robots will be used for specific applications, such as in situ monitoring analysis and chemical detections, water searching in agriculture, anchoring capabilities and for scientific understanding of the plant capabilities/behaviours themselves by building a physical models. The scientific work performed in this thesis addressed different aspects of this innovative robotic platform development: first of all, the study of the plants‟ characteristics and the enabling technologies in order to design and to develop the overall plantoid system. The proposed system can be easily sub-divided in two major sections, the aerial part and the subsoil part. About the subsoil part, the activity focused on the realization of a miniaturized mechatronic system that imitates the behaviour of the plant radical apex. Plants show a peculiar directional growth in response to external stimulations, such as light (phototropism), gravity (gravitropism), touch (thigmotropism) or water/humidity gradient (hydrotropism). Tropisms frequently interact between and among each other, and the final grown form of the plant is influenced by such interactions. In order to imitate the powerful performances of the plant root system, a novel actuator has been proposed. This actuator is based on the osmotic principle (osmotic actuator) and, differently by the state-of-the-art actuators based on the osmotic principle, it has been designed in order to have a reversible reaction. This actuator permits to perform the elongation and the typical steering capabilities of the root apex, generating high forces with low power consumption (in the time scale of the plant). Theoretical studies on this actuator show interesting performances in terms of actuation pressure (more than 20 atm) with power in the order of some mW and with actuation in the hours scale time. The robotic root apex was designed to be equipped with sensors (gravity and moisture) to imitate the plants sensing characteristics, and with the novel osmotic actuator to drive the growth in the correct direction. An embedded microcontroller implements the basic root behaviour on the basis of the information coming from the sensors. About the aerial part the activity in this thesis was focused on the realization of a sort of environmental monitoring module in order to imitate the high sensing capabilities of the plants. This part has been designed and realized in a more traditional way, without attempt to imitate completely the plant behaviour but taking inspiration from the fundamental characteristics (energy scavenging, wide sensing capabilities and communication). In order to integrate a wide amount of sensors an innovative interface board that guarantees the conditioning of the sensor, with plug-and-play capabilities and low power consumption, was developed. Several aspects of the plantoid system are not faced yet and they will be part of the future works. In particular, the growing mechanism of the roots (some possible solutions are proposed and explained in this thesis) and the integration of chemical sensors in the root apex

    Biomimetic Based Applications

    Get PDF
    The interaction between cells, tissues and biomaterial surfaces are the highlights of the book "Biomimetic Based Applications". In this regard the effect of nanostructures and nanotopographies and their effect on the development of a new generation of biomaterials including advanced multifunctional scaffolds for tissue engineering are discussed. The 2 volumes contain articles that cover a wide spectrum of subject matter such as different aspects of the development of scaffolds and coatings with enhanced performance and bioactivity, including investigations of material surface-cell interactions

    Characterisation of a nuclear cave environment utilising an autonomous swarm of heterogeneous robots

    Get PDF
    As nuclear facilities come to the end of their operational lifetime, safe decommissioning becomes a more prevalent issue. In many such facilities there exist ‘nuclear caves’. These caves constitute areas that may have been entered infrequently, or even not at all, since the construction of the facility. Due to this, the topography and nature of the contents of these nuclear caves may be unknown in a number of critical aspects, such as the location of dangerous substances or significant physical blockages to movement around the cave. In order to aid safe decommissioning, autonomous robotic systems capable of characterising nuclear cave environments are desired. The research put forward in this thesis seeks to answer the question: is it possible to utilise a heterogeneous swarm of autonomous robots for the remote characterisation of a nuclear cave environment? This is achieved through examination of the three key components comprising a heterogeneous swarm: sensing, locomotion and control. It will be shown that a heterogeneous swarm is not only capable of performing this task, it is preferable to a homogeneous swarm. This is due to the increased sensory and locomotive capabilities, coupled with more efficient explorational prowess when compared to a homogeneous swarm
    corecore