27,802 research outputs found

    Defective and Clustered Graph Colouring

    Full text link
    Consider the following two ways to colour the vertices of a graph where the requirement that adjacent vertices get distinct colours is relaxed. A colouring has "defect" dd if each monochromatic component has maximum degree at most dd. A colouring has "clustering" cc if each monochromatic component has at most cc vertices. This paper surveys research on these types of colourings, where the first priority is to minimise the number of colours, with small defect or small clustering as a secondary goal. List colouring variants are also considered. The following graph classes are studied: outerplanar graphs, planar graphs, graphs embeddable in surfaces, graphs with given maximum degree, graphs with given maximum average degree, graphs excluding a given subgraph, graphs with linear crossing number, linklessly or knotlessly embeddable graphs, graphs with given Colin de Verdi\`ere parameter, graphs with given circumference, graphs excluding a fixed graph as an immersion, graphs with given thickness, graphs with given stack- or queue-number, graphs excluding KtK_t as a minor, graphs excluding Ks,tK_{s,t} as a minor, and graphs excluding an arbitrary graph HH as a minor. Several open problems are discussed.Comment: This is a preliminary version of a dynamic survey to be published in the Electronic Journal of Combinatoric

    Spectral radius of finite and infinite planar graphs and of graphs of bounded genus

    Get PDF
    It is well known that the spectral radius of a tree whose maximum degree is DD cannot exceed 2D12\sqrt{D-1}. In this paper we derive similar bounds for arbitrary planar graphs and for graphs of bounded genus. It is proved that a the spectral radius ρ(G)\rho(G) of a planar graph GG of maximum vertex degree D4D\ge 4 satisfies Dρ(G)8D16+7.75\sqrt{D}\le \rho(G)\le \sqrt{8D-16}+7.75. This result is best possible up to the additive constant--we construct an (infinite) planar graph of maximum degree DD, whose spectral radius is 8D16\sqrt{8D-16}. This generalizes and improves several previous results and solves an open problem proposed by Tom Hayes. Similar bounds are derived for graphs of bounded genus. For every kk, these bounds can be improved by excluding K2,kK_{2,k} as a subgraph. In particular, the upper bound is strengthened for 5-connected graphs. All our results hold for finite as well as for infinite graphs. At the end we enhance the graph decomposition method introduced in the first part of the paper and apply it to tessellations of the hyperbolic plane. We derive bounds on the spectral radius that are close to the true value, and even in the simplest case of regular tessellations of type {p,q}\{p,q\} we derive an essential improvement over known results, obtaining exact estimates in the first order term and non-trivial estimates for the second order asymptotics

    Embedding of metric graphs on hyperbolic surfaces

    Full text link
    An embedding of a metric graph (G,d)(G, d) on a closed hyperbolic surface is \emph{essential}, if each complementary region has a negative Euler characteristic. We show, by construction, that given any metric graph, its metric can be rescaled so that it admits an essential and isometric embedding on a closed hyperbolic surface. The essential genus ge(G)g_e(G) of (G,d)(G, d) is the lowest genus of a surface on which such an embedding is possible. In the next result, we establish a formula to compute ge(G)g_e(G). Furthermore, we show that for every integer gge(G)g\geq g_e(G), (G,d)(G, d) admits such an embedding (possibly after a rescaling of dd) on a surface of genus gg. Next, we study minimal embeddings where each complementary region has Euler characteristic 1-1. The maximum essential genus gemax(G)g_e^{\max}(G) of (G,d)(G, d) is the largest genus of a surface on which the graph is minimally embedded. Finally, we describe a method explicitly for an essential embedding of (G,d)(G, d), where ge(G)g_e(G) and gemax(G)g_e^{\max}(G) are realized.Comment: Revised version, 11 pages, 3 figure

    Constructions of Large Graphs on Surfaces

    Full text link
    We consider the degree/diameter problem for graphs embedded in a surface, namely, given a surface Σ\Sigma and integers Δ\Delta and kk, determine the maximum order N(Δ,k,Σ)N(\Delta,k,\Sigma) of a graph embeddable in Σ\Sigma with maximum degree Δ\Delta and diameter kk. We introduce a number of constructions which produce many new largest known planar and toroidal graphs. We record all these graphs in the available tables of largest known graphs. Given a surface Σ\Sigma of Euler genus gg and an odd diameter kk, the current best asymptotic lower bound for N(Δ,k,Σ)N(\Delta,k,\Sigma) is given by 38gΔk/2.\sqrt{\frac{3}{8}g}\Delta^{\lfloor k/2\rfloor}. Our constructions produce new graphs of order \begin{cases}6\Delta^{\lfloor k/2\rfloor}& \text{if $\Sigma$ is the Klein bottle}\\ \(\frac{7}{2}+\sqrt{6g+\frac{1}{4}}\)\Delta^{\lfloor k/2\rfloor}& \text{otherwise,}\end{cases} thus improving the former value by a factor of 4.Comment: 15 pages, 7 figure

    Defective and Clustered Choosability of Sparse Graphs

    Full text link
    An (improper) graph colouring has "defect" dd if each monochromatic subgraph has maximum degree at most dd, and has "clustering" cc if each monochromatic component has at most cc vertices. This paper studies defective and clustered list-colourings for graphs with given maximum average degree. We prove that every graph with maximum average degree less than 2d+2d+2k\frac{2d+2}{d+2} k is kk-choosable with defect dd. This improves upon a similar result by Havet and Sereni [J. Graph Theory, 2006]. For clustered choosability of graphs with maximum average degree mm, no (1ϵ)m(1-\epsilon)m bound on the number of colours was previously known. The above result with d=1d=1 solves this problem. It implies that every graph with maximum average degree mm is 34m+1\lfloor{\frac{3}{4}m+1}\rfloor-choosable with clustering 2. This extends a result of Kopreski and Yu [Discrete Math., 2017] to the setting of choosability. We then prove two results about clustered choosability that explore the trade-off between the number of colours and the clustering. In particular, we prove that every graph with maximum average degree mm is 710m+1\lfloor{\frac{7}{10}m+1}\rfloor-choosable with clustering 99, and is 23m+1\lfloor{\frac{2}{3}m+1}\rfloor-choosable with clustering O(m)O(m). As an example, the later result implies that every biplanar graph is 8-choosable with bounded clustering. This is the best known result for the clustered version of the earth-moon problem. The results extend to the setting where we only consider the maximum average degree of subgraphs with at least some number of vertices. Several applications are presented
    corecore