4,043 research outputs found

    A survey on bio-signal analysis for human-robot interaction

    Get PDF
    The use of bio-signals analysis in human-robot interaction is rapidly increasing. There is an urgent demand for it in various applications, including health care, rehabilitation, research, technology, and manufacturing. Despite several state-of-the-art bio-signals analyses in human-robot interaction (HRI) research, it is unclear which one is the best. In this paper, the following topics will be discussed: robotic systems should be given priority in the rehabilitation and aid of amputees and disabled people; second, domains of feature extraction approaches now in use, which are divided into three main sections (time, frequency, and time-frequency). The various domains will be discussed, then a discussion of each domain's benefits and drawbacks, and finally, a recommendation for a new strategy for robotic systems

    Assistive robotics: research challenges and ethics education initiatives

    Get PDF
    Assistive robotics is a fast growing field aimed at helping healthcarers in hospitals, rehabilitation centers and nursery homes, as well as empowering people with reduced mobility at home, so that they can autonomously fulfill their daily living activities. The need to function in dynamic human-centered environments poses new research challenges: robotic assistants need to have friendly interfaces, be highly adaptable and customizable, very compliant and intrinsically safe to people, as well as able to handle deformable materials. Besides technical challenges, assistive robotics raises also ethical defies, which have led to the emergence of a new discipline: Roboethics. Several institutions are developing regulations and standards, and many ethics education initiatives include contents on human-robot interaction and human dignity in assistive situations. In this paper, the state of the art in assistive robotics is briefly reviewed, and educational materials from a university course on Ethics in Social Robotics and AI focusing on the assistive context are presented.Peer ReviewedPostprint (author's final draft

    Fall prevention intervention technologies: A conceptual framework and survey of the state of the art

    Get PDF
    In recent years, an ever increasing range of technology-based applications have been developed with the goal of assisting in the delivery of more effective and efficient fall prevention interventions. Whilst there have been a number of studies that have surveyed technologies for a particular sub-domain of fall prevention, there is no existing research which surveys the full spectrum of falls prevention interventions and characterises the range of technologies that have augmented this landscape. This study presents a conceptual framework and survey of the state of the art of technology-based fall prevention systems which is derived from a systematic template analysis of studies presented in contemporary research literature. The framework proposes four broad categories of fall prevention intervention system: Pre-fall prevention; Post-fall prevention; Fall injury prevention; Cross-fall prevention. Other categories include, Application type, Technology deployment platform, Information sources, Deployment environment, User interface type, and Collaborative function. After presenting the conceptual framework, a detailed survey of the state of the art is presented as a function of the proposed framework. A number of research challenges emerge as a result of surveying the research literature, which include a need for: new systems that focus on overcoming extrinsic falls risk factors; systems that support the environmental risk assessment process; systems that enable patients and practitioners to develop more collaborative relationships and engage in shared decision making during falls risk assessment and prevention activities. In response to these challenges, recommendations and future research directions are proposed to overcome each respective challenge.The Royal Society, grant Ref: RG13082

    How a Diverse Research Ecosystem Has Generated New Rehabilitation Technologies: Review of NIDILRR’s Rehabilitation Engineering Research Centers

    Get PDF
    Over 50 million United States citizens (1 in 6 people in the US) have a developmental, acquired, or degenerative disability. The average US citizen can expect to live 20% of his or her life with a disability. Rehabilitation technologies play a major role in improving the quality of life for people with a disability, yet widespread and highly challenging needs remain. Within the US, a major effort aimed at the creation and evaluation of rehabilitation technology has been the Rehabilitation Engineering Research Centers (RERCs) sponsored by the National Institute on Disability, Independent Living, and Rehabilitation Research. As envisioned at their conception by a panel of the National Academy of Science in 1970, these centers were intended to take a “total approach to rehabilitation”, combining medicine, engineering, and related science, to improve the quality of life of individuals with a disability. Here, we review the scope, achievements, and ongoing projects of an unbiased sample of 19 currently active or recently terminated RERCs. Specifically, for each center, we briefly explain the needs it targets, summarize key historical advances, identify emerging innovations, and consider future directions. Our assessment from this review is that the RERC program indeed involves a multidisciplinary approach, with 36 professional fields involved, although 70% of research and development staff are in engineering fields, 23% in clinical fields, and only 7% in basic science fields; significantly, 11% of the professional staff have a disability related to their research. We observe that the RERC program has substantially diversified the scope of its work since the 1970’s, addressing more types of disabilities using more technologies, and, in particular, often now focusing on information technologies. RERC work also now often views users as integrated into an interdependent society through technologies that both people with and without disabilities co-use (such as the internet, wireless communication, and architecture). In addition, RERC research has evolved to view users as able at improving outcomes through learning, exercise, and plasticity (rather than being static), which can be optimally timed. We provide examples of rehabilitation technology innovation produced by the RERCs that illustrate this increasingly diversifying scope and evolving perspective. We conclude by discussing growth opportunities and possible future directions of the RERC program

    Acceptance of Enhanced Robotic Assistance Systems in People With Amyotrophic Lateral Sclerosis–Associated Motor Impairment: Observational Online Study

    Get PDF
    Background: Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by a progressive paresis of the extremities and the loss of manual functioning. Due to the severe functional impairment that the disease entails, ALS requires the provision of comprehensive nursing care and a complex set of assistive technology devices. To relieve caregivers and promote autonomy of people with ALS, robotic assistance systems are being developed. This trial aims to evaluate the acceptance of technology, in general, and of robotic arm assistance among people with ALS in order to lay the groundwork for the development of a semiautomatic robotic arm that can be controlled by humans via a multimodal user interface and that will allow users to handle objects and attend to their own bodies. Objective: The aim of this study was to perform a systematic analysis of technology commitment and acceptance of robotic assistance systems from the perspective of physically limited people living with ALS. Methods: The investigation was conducted as a study of a prospective cohort. Participants were only included if they had received a medical diagnosis of ALS. Data collection took place via an online questionnaire on the Ambulanzpartner Soziotechnologie internet platform. Technological commitment was measured using the Neyer short scale. Furthermore, a multidimensional questionnaire was specially developed to analyze participant acceptance of robotic arm assistance: the Acceptance Measure of Robotic Arm Assistance (AMRAA). This questionnaire was accompanied by a video introducing the robot arm. ALS severity was ascertained using the ALS Functional Rating Scale–Extended (ALSFRS-EX). Results: A total of 268 people with ALS participated in the survey. Two-thirds of the participants were male. The overall mean ALS severity score was 42.9 (SD 11.7) points out of 60 on the ALSFRS-EX, with the most relevant restrictions on arms and legs (<60% of normal functioning). Technological commitment ranked high, with the top third scoring 47.2 points out of 60. Younger participants and males showed significantly higher values. The AMRAA score was, again, significantly higher among younger participants. However, the gender difference within the overall cohort was not significant. The more limited the arm functioning of participants according to the ALSFRS-EX subscale, the higher the acceptance rate of robotic assistance. This relationship proved significant. Conclusions: People with ALS display high technological commitment and feel positive about using technological assistance systems. In our study, younger participants were more open to technology use, in general, and robotic assistance, in particular. Self-appraisal of technology acceptance, competence, and control conviction were generally higher among men. However, any presumed gender difference vanished when users were asked to rate the anticipated usefulness of the technology, in particular the robotic arm. The acceptance was also reflected in users’ increased willingness to use a robotic arm as the functionality of their own arms decreased. From the perspective of people with ALS, robotic assistance systems are critical to promoting individual autonomy. Another key consideration in the development of future assistive technologies should be the reduction of caregiver burden. Trial Registration: German Clinical Trials Register DRKS00012803; https://tinyurl.com/w9yzduh
    • …
    corecore