6,461 research outputs found

    An embedded multichannel sound acquisition system for drone audition

    Get PDF
    Microphone array techniques can improve the acoustic sensing performance on drones, compared to the use of a single microphone. However, multichannel sound acquisition systems are not available in current commercial drone platforms. We present an embedded multichannel sound acquisition and recording system with eight microphones mounted on a quadcopter. The system is developed based on Bela, an embedded computing system for audio processing. The system can record the sound from multiple microphones simultaneously; can store the data locally for on-device processing; and can transmit the multichannel audio via wireless communication to a ground terminal for remote processing. We disclose the technical details of the hardware, software design and development of the system. We implement two setups that place the microphone array at different locations on the drone body. We present experimental results obtained by state-of-the-art drone audition algorithms applied to the sound recorded by the embedded system flying with a drone. It is shown that the ego-noise reduction performance achieved by the microphone array varies depending on the array placement and the location of the target sound. This observation provides valuable insights to hardware development for drone audition

    Scenario Extraction from a Large Real-World Dataset for the Assessment of Automated Vehicles

    Full text link
    Many players in the automotive field support scenario-based assessment of automated vehicles (AVs), where individual traffic situations can be tested and, thus, facilitate concluding on the performance of AVs in different situations. Since a large number of different scenarios can occur in real-world traffic, the question is how to find a finite set of relevant scenarios. Scenarios extracted from large real-world datasets represent real-world traffic since real driving data is used. Extracting scenarios, however, is challenging because (1) the scenarios to be tested should assess the AVs behave safely, which conflicts with the fact that the majority of the data contains scenarios that are not interesting from a safety perspective, and (2) extensive data processing is required, which hinders the utilization of large real-world datasets. In this work, we propose an approach for extracting scenarios from real-world driving data. The first step is data preprocessing to tackle the errors and noise in real-world data by reconstructing the data. The second step performs data tagging to label actors' activities, their interactions with each other and the environment. Finally, the scenarios are extracted by searching for combinations of tags. The proposed approach is evaluated using data simulated with CARLA and applied to a part of a large real-world driving dataset, i.e., the Waymo Open Motion Dataset (WOMD). The code and scenarios extracted from WOMD are open to the research community to facilitate the assessment of the automated driving functions in different scenarios.Comment: 6 pages, accepted by ITSC 202

    La traduzione specializzata all’opera per una piccola impresa in espansione: la mia esperienza di internazionalizzazione in cinese di Bioretics© S.r.l.

    Get PDF
    Global markets are currently immersed in two all-encompassing and unstoppable processes: internationalization and globalization. While the former pushes companies to look beyond the borders of their country of origin to forge relationships with foreign trading partners, the latter fosters the standardization in all countries, by reducing spatiotemporal distances and breaking down geographical, political, economic and socio-cultural barriers. In recent decades, another domain has appeared to propel these unifying drives: Artificial Intelligence, together with its high technologies aiming to implement human cognitive abilities in machinery. The “Language Toolkit – Le lingue straniere al servizio dell’internazionalizzazione dell’impresa” project, promoted by the Department of Interpreting and Translation (Forlì Campus) in collaboration with the Romagna Chamber of Commerce (Forlì-Cesena and Rimini), seeks to help Italian SMEs make their way into the global market. It is precisely within this project that this dissertation has been conceived. Indeed, its purpose is to present the translation and localization project from English into Chinese of a series of texts produced by Bioretics© S.r.l.: an investor deck, the company website and part of the installation and use manual of the Aliquis© framework software, its flagship product. This dissertation is structured as follows: Chapter 1 presents the project and the company in detail; Chapter 2 outlines the internationalization and globalization processes and the Artificial Intelligence market both in Italy and in China; Chapter 3 provides the theoretical foundations for every aspect related to Specialized Translation, including website localization; Chapter 4 describes the resources and tools used to perform the translations; Chapter 5 proposes an analysis of the source texts; Chapter 6 is a commentary on translation strategies and choices

    Continual Cross-Dataset Adaptation in Road Surface Classification

    Full text link
    Accurate road surface classification is crucial for autonomous vehicles (AVs) to optimize driving conditions, enhance safety, and enable advanced road mapping. However, deep learning models for road surface classification suffer from poor generalization when tested on unseen datasets. To update these models with new information, also the original training dataset must be taken into account, in order to avoid catastrophic forgetting. This is, however, inefficient if not impossible, e.g., when the data is collected in streams or large amounts. To overcome this limitation and enable fast and efficient cross-dataset adaptation, we propose to employ continual learning finetuning methods designed to retain past knowledge while adapting to new data, thus effectively avoiding forgetting. Experimental results demonstrate the superiority of this approach over naive finetuning, achieving performance close to fresh retraining. While solving this known problem, we also provide a general description of how the same technique can be adopted in other AV scenarios. We highlight the potential computational and economic benefits that a continual-based adaptation can bring to the AV industry, while also reducing greenhouse emissions due to unnecessary joint retraining.Comment: To be published in Proceedings of 26th IEEE International Conference on Intelligent Transportation Systems (ITSC 2023

    Unveiling the frontiers of deep learning: innovations shaping diverse domains

    Full text link
    Deep learning (DL) enables the development of computer models that are capable of learning, visualizing, optimizing, refining, and predicting data. In recent years, DL has been applied in a range of fields, including audio-visual data processing, agriculture, transportation prediction, natural language, biomedicine, disaster management, bioinformatics, drug design, genomics, face recognition, and ecology. To explore the current state of deep learning, it is necessary to investigate the latest developments and applications of deep learning in these disciplines. However, the literature is lacking in exploring the applications of deep learning in all potential sectors. This paper thus extensively investigates the potential applications of deep learning across all major fields of study as well as the associated benefits and challenges. As evidenced in the literature, DL exhibits accuracy in prediction and analysis, makes it a powerful computational tool, and has the ability to articulate itself and optimize, making it effective in processing data with no prior training. Given its independence from training data, deep learning necessitates massive amounts of data for effective analysis and processing, much like data volume. To handle the challenge of compiling huge amounts of medical, scientific, healthcare, and environmental data for use in deep learning, gated architectures like LSTMs and GRUs can be utilized. For multimodal learning, shared neurons in the neural network for all activities and specialized neurons for particular tasks are necessary.Comment: 64 pages, 3 figures, 3 table

    CARLA+: An Evolution of the CARLA Simulator for Complex Environment Using a Probabilistic Graphical Model

    Get PDF
    In an urban and uncontrolled environment, the presence of mixed traffic of autonomous vehicles, classical vehicles, vulnerable road users, e.g., pedestrians, and unprecedented dynamic events makes it challenging for the classical autonomous vehicle to navigate the traffic safely. Therefore, the realization of collaborative autonomous driving has the potential to improve road safety and traffic efficiency. However, an obvious challenge in this regard is how to define, model, and simulate the environment that captures the dynamics of a complex and urban environment. Therefore, in this research, we first define the dynamics of the envisioned environment, where we capture the dynamics relevant to the complex urban environment, specifically, highlighting the challenges that are unaddressed and are within the scope of collaborative autonomous driving. To this end, we model the dynamic urban environment leveraging a probabilistic graphical model (PGM). To develop the proposed solution, a realistic simulation environment is required. There are a number of simulators—CARLA (Car Learning to Act), one of the prominent ones, provides rich features and environment; however, it still fails on a few fronts, for example, it cannot fully capture the complexity of an urban environment. Moreover, the classical CARLA mainly relies on manual code and multiple conditional statements, and it provides no pre-defined way to do things automatically based on the dynamic simulation environment. Hence, there is an urgent need to extend the off-the-shelf CARLA with more sophisticated settings that can model the required dynamics. In this regard, we comprehensively design, develop, and implement an extension of a classical CARLA referred to as CARLA+ for the complex environment by integrating the PGM framework. It provides a unified framework to automate the behavior of different actors leveraging PGMs. Instead of manually catering to each condition, CARLA+ enables the user to automate the modeling of different dynamics of the environment. Therefore, to validate the proposed CARLA+, experiments with different settings are designed and conducted. The experimental results demonstrate that CARLA+ is flexible enough to allow users to model various scenarios, ranging from simple controlled models to complex models learned directly from real-world data. In the future, we plan to extend CARLA+ by allowing for more configurable parameters and more flexibility on the type of probabilistic networks and models one can choose. The open-source code of CARLA+ is made publicly available for researchers

    Geoarchaeological Investigations of Late Pleistocene Physical Environments and Impacts of Prehistoric Foragers on the Ecosystem in Northern Malawi and Austria

    Get PDF
    A growing body of research shows that not only did environmental changes play an important role in human evolution, but humans in turn have impacted ecosystems and landscape evolution since the Late Pleistocene. This thesis presents collaborative work on Late Pleistocene open-air sites in the Karonga District of northern Malawi, in which new aspects of forager behavior came to light through the reconstruction of physical environments. My work has helped recognize that late Middle Stone Age (MSA) activity and tool production occurred in locally more open riparian environments within evergreen gallery forest, surrounded by a regional vegetation dominated by miombo woodlands and savanna. Additionally, MSA hunter-gatherers exploited the confluence of river and wetland areas along the shores of Lake Malawi, which likely served as important corridors for the dispersal of biota. By comparing data from the archaeological investigations with lake core records, we were able to identify effects of anthropogenic burning on vegetation structures and sedimentation in the region as early as 80 thousand years ago. These findings not only proved it possible to uncover early impacts of human activity on the ecosystem, but also emphasize the importance of fire in the lives of early foragers. Publications contained within this dissertation: A. Wright, D.K., Thompson, J.C., Schilt, F.C., Cohen, A., Choi, J-H., Mercader, J., Nightingale, S., Miller, C.E., Mentzer, S.M., Walde, D., Welling, M., and Gomani-Chindebvu, E. “Approaches to Middle Stone Age landscape archaeology in tropical Africa”. Special issue Geoarchaeology of the Tropics of Journal of Archaeological Science 77:64-77. http://dx.doi.org/10.1016/j.jas.2016.01.014 B. Schilt, F.C., Verpoorte, A., Antl, W. “Micromorphology of an Upper Paleolithic cultural layer at Grub-Kranawetberg, Austria”. Journal of Archaeological Science: Reports 14:152-162. http://dx.doi.org/10.1016/j.jasrep.2017.05.041 C. Nightingale, S., Schilt, F.C., Thompson, J.C., Wright, D.K., Forman, S., Mercader, J., Moss, P., Clarke, S. Itambu, M., Gomani-Chindebvu, E., Welling, M. Late Middle Stone Age Behavior and Environments at Chaminade I (Karonga, Malawi). Journal of Paleolithic Archaeology 2-3:258-397. https://doi.org/10.1007/s41982-019-00035-3 D. Thompson, J.C.*, Wright, D.K.*, Ivory, S.J.*, Choi, J-H., Nightingale, S., Mackay, A., Schilt, F.C., Otárola-Castillo, E., Mercader, J., Forman, S.L., Pietsch, T., Cohen, A.S., Arrowsmith, J.R., Welling, M., Davis, J., Schiery, B., Kaliba, P., Malijani, O., Blome, M.W., O’Driscoll, C., Mentzer, S.M., Miller, C., Heo, S., Choi, J., Tembo, J., Mapemba, F., Simengwa, D., and Gomani-Chindebvu, E. “Early human impacts and ecosystem reorganization in southern-central Africa”. Science Advances 7(19): eabf9776. *equal contribution https://doi.org/10.1126/sciadv.abf9776 E. Schilt, F.C., Miller, C.M., Wright, D.K., Mentzer, S.M., Mercader, J., Moss, Choi, J.-H., Siljedal, G., Clarke, S., Mwambwiga, A., Thomas, K., Barbieri, A., Kaliba, P., Gomani-Chindebvu, E., Thompson, J.C. “Hunter-gatherer environments at the Late Pleistocene sites of Bruce and Mwanganda´s Village, northern Malawi”. Quaternary Science Reviews 292: 107638. https://www.sciencedirect.com/science/article/pii/S0277379122002694 [untranslated

    Soundscape in Urban Forests

    Get PDF
    This Special Issue of Forests explores the role of soundscapes in urban forested areas. It is comprised of 11 papers involving soundscape studies conducted in urban forests from Asia and Africa. This collection contains six research fields: (1) the ecological patterns and processes of forest soundscapes; (2) the boundary effects and perceptual topology; (3) natural soundscapes and human health; (4) the experience of multi-sensory interactions; (5) environmental behavior and cognitive disposition; and (6) soundscape resource management in forests

    Blending the Material and Digital World for Hybrid Interfaces

    Get PDF
    The development of digital technologies in the 21st century is progressing continuously and new device classes such as tablets, smartphones or smartwatches are finding their way into our everyday lives. However, this development also poses problems, as these prevailing touch and gestural interfaces often lack tangibility, take little account of haptic qualities and therefore require full attention from their users. Compared to traditional tools and analog interfaces, the human skills to experience and manipulate material in its natural environment and context remain unexploited. To combine the best of both, a key question is how it is possible to blend the material world and digital world to design and realize novel hybrid interfaces in a meaningful way. Research on Tangible User Interfaces (TUIs) investigates the coupling between physical objects and virtual data. In contrast, hybrid interfaces, which specifically aim to digitally enrich analog artifacts of everyday work, have not yet been sufficiently researched and systematically discussed. Therefore, this doctoral thesis rethinks how user interfaces can provide useful digital functionality while maintaining their physical properties and familiar patterns of use in the real world. However, the development of such hybrid interfaces raises overarching research questions about the design: Which kind of physical interfaces are worth exploring? What type of digital enhancement will improve existing interfaces? How can hybrid interfaces retain their physical properties while enabling new digital functions? What are suitable methods to explore different design? And how to support technology-enthusiast users in prototyping? For a systematic investigation, the thesis builds on a design-oriented, exploratory and iterative development process using digital fabrication methods and novel materials. As a main contribution, four specific research projects are presented that apply and discuss different visual and interactive augmentation principles along real-world applications. The applications range from digitally-enhanced paper, interactive cords over visual watch strap extensions to novel prototyping tools for smart garments. While almost all of them integrate visual feedback and haptic input, none of them are built on rigid, rectangular pixel screens or use standard input modalities, as they all aim to reveal new design approaches. The dissertation shows how valuable it can be to rethink familiar, analog applications while thoughtfully extending them digitally. Finally, this thesis’ extensive work of engineering versatile research platforms is accompanied by overarching conceptual work, user evaluations and technical experiments, as well as literature reviews.Die Durchdringung digitaler Technologien im 21. Jahrhundert schreitet stetig voran und neue Geräteklassen wie Tablets, Smartphones oder Smartwatches erobern unseren Alltag. Diese Entwicklung birgt aber auch Probleme, denn die vorherrschenden berührungsempfindlichen Oberflächen berücksichtigen kaum haptische Qualitäten und erfordern daher die volle Aufmerksamkeit ihrer Nutzer:innen. Im Vergleich zu traditionellen Werkzeugen und analogen Schnittstellen bleiben die menschlichen Fähigkeiten ungenutzt, die Umwelt mit allen Sinnen zu begreifen und wahrzunehmen. Um das Beste aus beiden Welten zu vereinen, stellt sich daher die Frage, wie neuartige hybride Schnittstellen sinnvoll gestaltet und realisiert werden können, um die materielle und die digitale Welt zu verschmelzen. In der Forschung zu Tangible User Interfaces (TUIs) wird die Verbindung zwischen physischen Objekten und virtuellen Daten untersucht. Noch nicht ausreichend erforscht wurden hingegen hybride Schnittstellen, die speziell darauf abzielen, physische Gegenstände des Alltags digital zu erweitern und anhand geeigneter Designparameter und Entwurfsräume systematisch zu untersuchen. In dieser Dissertation wird daher untersucht, wie Materialität und Digitalität nahtlos ineinander übergehen können. Es soll erforscht werden, wie künftige Benutzungsschnittstellen nützliche digitale Funktionen bereitstellen können, ohne ihre physischen Eigenschaften und vertrauten Nutzungsmuster in der realen Welt zu verlieren. Die Entwicklung solcher hybriden Ansätze wirft jedoch übergreifende Forschungsfragen zum Design auf: Welche Arten von physischen Schnittstellen sind es wert, betrachtet zu werden? Welche Art von digitaler Erweiterung verbessert das Bestehende? Wie können hybride Konzepte ihre physischen Eigenschaften beibehalten und gleichzeitig neue digitale Funktionen ermöglichen? Was sind geeignete Methoden, um verschiedene Designs zu erforschen? Wie kann man Technologiebegeisterte bei der Erstellung von Prototypen unterstützen? Für eine systematische Untersuchung stützt sich die Arbeit auf einen designorientierten, explorativen und iterativen Entwicklungsprozess unter Verwendung digitaler Fabrikationsmethoden und neuartiger Materialien. Im Hauptteil werden vier Forschungsprojekte vorgestellt, die verschiedene visuelle und interaktive Prinzipien entlang realer Anwendungen diskutieren. Die Szenarien reichen von digital angereichertem Papier, interaktiven Kordeln über visuelle Erweiterungen von Uhrarmbändern bis hin zu neuartigen Prototyping-Tools für intelligente Kleidungsstücke. Um neue Designansätze aufzuzeigen, integrieren nahezu alle visuelles Feedback und haptische Eingaben, um Alternativen zu Standard-Eingabemodalitäten auf starren Pixelbildschirmen zu schaffen. Die Dissertation hat gezeigt, wie wertvoll es sein kann, bekannte, analoge Anwendungen zu überdenken und sie dabei gleichzeitig mit Bedacht digital zu erweitern. Dabei umfasst die vorliegende Arbeit sowohl realisierte technische Forschungsplattformen als auch übergreifende konzeptionelle Arbeiten, Nutzerstudien und technische Experimente sowie die Analyse existierender Forschungsarbeiten

    Diseño de un sistema de detección de intersecciones para la navegación autónoma de un vehículo inteligente

    Get PDF
    Este TFG se centra en el estudio, desarrollo y evaluación de un sistema inteligente, donde conocidos los diferentes elementos que rodean a un vehículo y su contextualización respecto a la vía, permite evaluar la presencia inminente de una intersección y clasificarla según su tipología. Para ello, se desarrolla un identificador-clasificador inteligente mediante la herramienta de computación conocida como MATLAB, junto a la toolbox de Fuzzy, a partir de la cual se analizan, diseñan y simulan escenarios con alta complejidad. Todo ello, a través de reglas que incluyen operadores lógicos, que plasman razonamientos cercanos a la heurística humana, llevando a cabo un sistema basado en lógica difusa. En el transcurso del trabajo, se estudiarán y utilizarán diferentes tipos de entradas para nuestro identificador-clasificador, obtenidas de algoritmos de deep learning, como puede ser la segmentación semántica de la vía a través de imágenes, que nos permite generar modelos donde se da relevancia a diferentes elementos del entorno.This TFG focuses on the study, development and evaluation of an intelligent system, where knowing the different elements that surround a vehicle and its contextualization with respect to the road, allows to evaluate the imminent presence of an intersection and classify it according to its typology. To do this, an intelligent identifier-classifier is developed using the computer tool known as MATLAB, together with the Fuzzy toolbox, from which scenarios with high complexity are analyzed, designed and simulated. All this, through rules that include logical operators, which reflect reasoning close to human heuristics, carrying out a system based on fuzzy logic. In the course of the work, different types of inputs for our identifier-classifier will be studied and used, obtained from deep learning algorithms, such as the semantic segmentation of the path through images, which allows us to generate models where relevance is given to different elements of the environment.Grado en Ingeniería en Electrónica y Automática Industria
    corecore