9,619 research outputs found

    Survey of Important Issues in UAV Communication Networks

    Full text link
    Unmanned Aerial Vehicles (UAVs) have enormous potential in the public and civil domains. These are particularly useful in applications where human lives would otherwise be endangered. Multi-UAV systems can collaboratively complete missions more efficiently and economically as compared to single UAV systems. However, there are many issues to be resolved before effective use of UAVs can be made to provide stable and reliable context-specific networks. Much of the work carried out in the areas of Mobile Ad Hoc Networks (MANETs), and Vehicular Ad Hoc Networks (VANETs) does not address the unique characteristics of the UAV networks. UAV networks may vary from slow dynamic to dynamic; have intermittent links and fluid topology. While it is believed that ad hoc mesh network would be most suitable for UAV networks yet the architecture of multi-UAV networks has been an understudied area. Software Defined Networking (SDN) could facilitate flexible deployment and management of new services and help reduce cost, increase security and availability in networks. Routing demands of UAV networks go beyond the needs of MANETS and VANETS. Protocols are required that would adapt to high mobility, dynamic topology, intermittent links, power constraints and changing link quality. UAVs may fail and the network may get partitioned making delay and disruption tolerance an important design consideration. Limited life of the node and dynamicity of the network leads to the requirement of seamless handovers where researchers are looking at the work done in the areas of MANETs and VANETs, but the jury is still out. As energy supply on UAVs is limited, protocols in various layers should contribute towards greening of the network. This article surveys the work done towards all of these outstanding issues, relating to this new class of networks, so as to spur further research in these areas.Comment: arXiv admin note: substantial text overlap with arXiv:1304.3904 by other author

    Mobile Edge Computing in Unmanned Aerial Vehicle Networks

    Full text link
    Unmanned aerial vehicle (UAV)-enabled communication networks are promising in the fifth and beyond wireless communication systems. In this paper, we shed light on three UAV-enabled mobile edge computing (MEC) architectures. Those architectures have been receiving ever increasing research attention for improving computation performance and decreasing execution latency by integrating UAV into MEC networks. We present a comprehensive survey for the state-of-the-art research in this domain. Important implementation issues are clarified. Moreover, in order to provide an enlightening guidance for future research directions, key challenges and open issues are discussed.Comment: This paper has been accepted by IEEE Wireless Communications magazin

    Survey on Unmanned Aerial Vehicle Networks: A Cyber Physical System Perspective

    Full text link
    Unmanned aerial vehicle (UAV) networks are playing an important role in various areas due to their agility and versatility, which have attracted significant attention from both the academia and industry in recent years. As an integration of the embedded systems with communication devices, computation capabilities and control modules, the UAV network could build a closed loop from data perceiving, information exchanging, decision making to the final execution, which tightly integrates the cyber processes into the physical devices. Therefore, the UAV network could be considered as a cyber physical system (CPS). Revealing the coupling effects among the three interacted components in this CPS system, i.e., communication, computation and control, is envisioned as the key to properly utilize all the available resources and hence improve the performance of the UAV networks. In this paper, we present a comprehensive survey on the UAV networks from a CPS perspective. Firstly, we respectively research the basics and advances with respect to the three CPS components in the UAV networks. Then we look inside to investigate how these components contribute to the system performance by classifying the UAV networks into three hierarchies, i.e., the cell level, the system level, and the system of system level. Further, the coupling effects among these CPS components are explicitly illustrated, which could be enlightening to deal with the challenges in each individual aspect. New research directions and open issues are discussed at the end of this survey. With this intensive literature review, we try to provide a novel insight into the state-of-the-art in the UAV networks.Comment: 42 pages, 19 figures and 11 table

    Design Challenges of Multi-UAV Systems in Cyber-Physical Applications: A Comprehensive Survey, and Future Directions

    Full text link
    Unmanned Aerial Vehicles (UAVs) have recently rapidly grown to facilitate a wide range of innovative applications that can fundamentally change the way cyber-physical systems (CPSs) are designed. CPSs are a modern generation of systems with synergic cooperation between computational and physical potentials that can interact with humans through several new mechanisms. The main advantages of using UAVs in CPS application is their exceptional features, including their mobility, dynamism, effortless deployment, adaptive altitude, agility, adjustability, and effective appraisal of real-world functions anytime and anywhere. Furthermore, from the technology perspective, UAVs are predicted to be a vital element of the development of advanced CPSs. Therefore, in this survey, we aim to pinpoint the most fundamental and important design challenges of multi-UAV systems for CPS applications. We highlight key and versatile aspects that span the coverage and tracking of targets and infrastructure objects, energy-efficient navigation, and image analysis using machine learning for fine-grained CPS applications. Key prototypes and testbeds are also investigated to show how these practical technologies can facilitate CPS applications. We present and propose state-of-the-art algorithms to address design challenges with both quantitative and qualitative methods and map these challenges with important CPS applications to draw insightful conclusions on the challenges of each application. Finally, we summarize potential new directions and ideas that could shape future research in these areas

    Air-Ground Integrated Mobile Edge Networks: Architecture, Challenges and Opportunities

    Full text link
    The ever-increasing mobile data demands have posed significant challenges in the current radio access networks, while the emerging computation-heavy Internet of things (IoT) applications with varied requirements demand more flexibility and resilience from the cloud/edge computing architecture. In this article, to address the issues, we propose a novel air-ground integrated mobile edge network (AGMEN), where UAVs are flexibly deployed and scheduled, and assist the communication, caching, and computing of the edge network. In specific, we present the detailed architecture of AGMEN, and investigate the benefits and application scenarios of drone-cells, and UAV-assisted edge caching and computing. Furthermore, the challenging issues in AGMEN are discussed, and potential research directions are highlighted.Comment: Accepted by IEEE Communications Magazine. 5 figure

    Cooperation Techniques for A Cellular Internet of Unmanned Aerial Vehicles

    Full text link
    Unmanned aerial vehicles (UAVs) are powerful Internet-of-Things components to provide sensing and communications in the air due to their advantages in mobility and flexibility. As aerial users, UAVs are envisioned to support various sensing applications in the next generation cellular systems, which have been studied by the Third Generation Partnership Project (3GPP). However, the Quality-of-Services (QoS) of the cellular link between the UAV and the base station may not be guaranteed when UAVs are at the cell edge or experiencing deep fading. In this article, we first introduce the non-cooperative cellular Internet of UAVs. Then we propose a cooperative sense-and-send protocol, in which a UAV can upload sensory data with the help of a UAV relay, to provide a better communication QoS for the sensing tasks. Key techniques including trajectory design and radio resource management that support the cooperative cellular Internet of UAVs are presented in detail. Finally, the extended cooperative cellular Internet of UAVs is discussed for QoS improvement with some open issues, such as massive multiple-input multiple-output systems, millimeter-wave, and cognitive communications.Comment: This paper has been accepted by IEEE Wireless Communication

    An Edge Computing Empowered Radio Access Network With UAV-Mounted FSO Fronthaul and Backhaul: Key Challenges and Approaches

    Full text link
    One promising approach to address the supply-demand mismatch between the terrestrial infrastructure and the temporary and/or unexpected traffic demands is to leverage the unmanned aerial vehicle (UAV) technologies. Motivated by the recent advancement of UAV technologies and retromodulator based free space optical communication, we propose a novel edge-computing empowered radio access network architecture where the fronthaul and backhaul links are mounted on the UAVs for rapid event response and flexible deployment. The implementation of hardware and networking technologies for the proposed architecture are investigated. Due to the limited payload and endurance as well as the high mobility of UAVs, research challenges related to the communication resource management and recent research progress are reported.Comment: This work is accepted by IEEE Wireless Communications Magazin

    Applications of Deep Reinforcement Learning in Communications and Networking: A Survey

    Full text link
    This paper presents a comprehensive literature review on applications of deep reinforcement learning in communications and networking. Modern networks, e.g., Internet of Things (IoT) and Unmanned Aerial Vehicle (UAV) networks, become more decentralized and autonomous. In such networks, network entities need to make decisions locally to maximize the network performance under uncertainty of network environment. Reinforcement learning has been efficiently used to enable the network entities to obtain the optimal policy including, e.g., decisions or actions, given their states when the state and action spaces are small. However, in complex and large-scale networks, the state and action spaces are usually large, and the reinforcement learning may not be able to find the optimal policy in reasonable time. Therefore, deep reinforcement learning, a combination of reinforcement learning with deep learning, has been developed to overcome the shortcomings. In this survey, we first give a tutorial of deep reinforcement learning from fundamental concepts to advanced models. Then, we review deep reinforcement learning approaches proposed to address emerging issues in communications and networking. The issues include dynamic network access, data rate control, wireless caching, data offloading, network security, and connectivity preservation which are all important to next generation networks such as 5G and beyond. Furthermore, we present applications of deep reinforcement learning for traffic routing, resource sharing, and data collection. Finally, we highlight important challenges, open issues, and future research directions of applying deep reinforcement learning.Comment: 37 pages, 13 figures, 6 tables, 174 reference paper

    Self-Organizing Relay Selection in UAV Communication Networks: A Matching Game Perspective

    Full text link
    For large unmanned aerial vehicle (UAV) networks, the timely communication is needed to accomplish a series of missions accurately and effectively. The relay technology will play an important role in UAV networks by helping drones communicating with long-distance drones, which solves the problem of the limited transmission power of drones. In this paper, the relay selection is seen as the entry point to improve the performance of self-organizing network with multiple optimizing factors. Different from the ground relay models, the relay selection in UAV communication networks presents new challenges, including heterogeneous, dynamic, dense and limited information characteristics. More effective schemes with distributed, fast, robust and scalable features are required to solve the optimizing problem. After discussing the challenges and requirements, we find that the matching game is suitable to model the complex relay model. The advantages of the matching game in self-organizing UAV communications are discussed. Moreover, we provide extensive applications of matching markets, and then propose a novel classification of matching game which focuses on the competitive relationship between players. Specifically, basic preliminary models are presented and some future research directions of matching game in UAV relay models are discussed.Comment: 8 pages, 5 figures, to appear in IEEE Wireless Communication

    Tutorial on UAV: A Blue Sky View on Wireless Communication

    Full text link
    The growing use of Unmanned Aerial Vehicles (UAVs) for various applications requires ubiquitous and reliable connectivity for safe control and data exchange between these devices and ground terminals. Depending on the application, UAV-mounted wireless equipment can either be an aerial user equipment (AUE) that co-exists with the terrestrial users, or it can be a part of wireless infrastructure providing a range of services to the ground users. For instance, AUE can be used for real-time search and rescue and Aerial Base Station (ABS) can enhance coverage, capacity and energy efficiency of wireless networks. In both cases, UAV-based solutions are scalable, mobile, fast to deploy. However, several technical challenges have to be addressed. In this work, we present a tutorial on wireless communication with UAVs, taking into account a wide range of potential applications. The main goal of this work is to provide a complete overview of the main scenarios (AUE and ABS), channel and performance models, compare them, and discuss open research points. This work gives a comprehensive overview of the research done until now and depicts a comprehensive picture to foster new ideas and solutions while avoiding duplication of past work. We start by discussing the open challenges of wireless communication with UAVs. To give answers to the posed questions, we focus on the UAV communication basics, mainly providing the necessary channel modeling background and giving guidelines on how various channel models should be used. Next, theoretical, simulation- and measurement-based approaches, to address the key challenges for AUE usage, are presented. Moreover, in this work, we aim to provide a comprehensive overview on how UAV-mounted equipment can be used as a part of a communication network. Based on the theoretical analysis, we show how various network parameters can be optimized.Comment: 42 pages, 32 Figure
    corecore