581 research outputs found

    A Review of Thyroid Disorder Detection Using Medical Images

    Get PDF
    Thyroid is one of the largest endocrine gland. It is a small butterfly shaped gland which is located in the front portion of the neck.It is located just below the Adams apple. Thyroid gland produces hormones that help the body to control metabolism. There are various thyroid disorders.It includes Hyperthyroidism, Hypothyroidism, goiter and thyroid nodules (benign/malignant). is most commonly. Various modalities that are used to detect and classify abnormalities of the thyroid gland are Ultrasoundimaging,(ComputerTomography(CT), Magnetic Resonance Imaging(MRI). Computer Aided Diagnosis (CAD) help radiologists and doctors to increase the diagnosis accuracy, reduce biopsy ratio and save their time and effort. Thyroid medical images are utilized for the diagnosis process

    Machine Learning in Ultrasound Computer-Aided Diagnostic Systems: A Survey

    Get PDF

    Artificial Intelligence for Thyroid Nodule Characterization: Where Are We Standing?

    Get PDF
    Machine learning (ML) is an interdisciplinary sector in the subset of artificial intelligence (AI) that creates systems to set up logical connections using algorithms, and thus offers predictions for complex data analysis. In the present review, an up-to-date summary of the current state of the art regarding ML and AI implementation for thyroid nodule ultrasound characterization and cancer is provided, highlighting controversies over AI application as well as possible benefits of ML, such as, for example, training purposes. There is evidence that AI increases diagnostic accuracy and significantly limits inter-observer variability by using standardized mathematical algorithms. It could also be of aid in practice settings with limited sub-specialty expertise, offering a second opinion by means of radiomics and computer-assisted diagnosis. The introduction of AI represents a revolutionary event in thyroid nodule evaluation, but key issues for further implementation include integration with radiologist expertise, impact on workflow and efficiency, and performance monitoring

    Diagnosis of Thyroid Nodules: Performance of a Deep Learning Convolutional Neural Network Model vs. Radiologists

    Get PDF
    Computer-aided diagnosis (CAD) systems hold potential to improve the diagnostic accuracy of thyroid ultrasound (US). We aimed to develop a deep learning-based US CAD system (dCAD) for the diagnosis of thyroid nodules and compare its performance with those of a support vector machine (SVM)-based US CAD system (sCAD) and radiologists. dCAD was developed by using US images of 4919 thyroid nodules from three institutions. Its diagnostic performance was prospectively evaluated between June 2016 and February 2017 in 286 nodules, and was compared with those of sCAD and radiologists, using logistic regression with the generalized estimating equation. Subgroup analyses were performed according to experience level and separately for small thyroid nodules 1-2โ€‰cm. There was no difference in overall sensitivity, specificity, positive predictive value (PPV), negative predictive value and accuracy (all pโ€‰>โ€‰0.05) between radiologists and dCAD. Radiologists and dCAD showed higher specificity, PPV, and accuracy than sCAD (all pโ€‰<โ€‰0.001). In small nodules, experienced radiologists showed higher specificity, PPV and accuracy than sCAD (all pโ€‰<โ€‰0.05). In conclusion, dCAD showed overall comparable diagnostic performance with radiologists and assessed thyroid nodules more effectively than sCAD, without loss of sensitivity.ope

    Differentiation of thyroid nodules on US using features learned and extracted from various convolutional neural networks

    Get PDF
    Thyroid nodules are a common clinical problem. Ultrasonography (US) is the main tool used to sensitively diagnose thyroid cancer. Although US is non-invasive and can accurately differentiate benign and malignant thyroid nodules, it is subjective and its results inevitably lack reproducibility. Therefore, to provide objective and reliable information for US assessment, we developed a CADx system that utilizes convolutional neural networks and the machine learning technique. The diagnostic performances of 6 radiologists and 3 representative results obtained from the proposed CADx system were compared and analyzed.ope

    A Survey on Deep Learning in Medical Image Analysis

    Full text link
    Deep learning algorithms, in particular convolutional networks, have rapidly become a methodology of choice for analyzing medical images. This paper reviews the major deep learning concepts pertinent to medical image analysis and summarizes over 300 contributions to the field, most of which appeared in the last year. We survey the use of deep learning for image classification, object detection, segmentation, registration, and other tasks and provide concise overviews of studies per application area. Open challenges and directions for future research are discussed.Comment: Revised survey includes expanded discussion section and reworked introductory section on common deep architectures. Added missed papers from before Feb 1st 201

    Recent Advances in Machine Learning Applied to Ultrasound Imaging

    Get PDF
    Machine learning (ML) methods are pervading an increasing number of fields of application because of their capacity to effectively solve a wide variety of challenging problems. The employment of ML techniques in ultrasound imaging applications started several years ago but the scientific interest in this issue has increased exponentially in the last few years. The present work reviews the most recent (2019 onwards) implementations of machine learning techniques for two of the most popular ultrasound imaging fields, medical diagnostics and non-destructive evaluation. The former, which covers the major part of the review, was analyzed by classifying studies according to the human organ investigated and the methodology (e.g., detection, segmentation, and/or classification) adopted, while for the latter, some solutions to the detection/classification of material defects or particular patterns are reported. Finally, the main merits of machine learning that emerged from the study analysis are summarized and discussed. ยฉ 2022 by the authors. Licensee MDPI, Basel, Switzerland
    • โ€ฆ
    corecore