15,727 research outputs found

    Beyond Volume: The Impact of Complex Healthcare Data on the Machine Learning Pipeline

    Full text link
    From medical charts to national census, healthcare has traditionally operated under a paper-based paradigm. However, the past decade has marked a long and arduous transformation bringing healthcare into the digital age. Ranging from electronic health records, to digitized imaging and laboratory reports, to public health datasets, today, healthcare now generates an incredible amount of digital information. Such a wealth of data presents an exciting opportunity for integrated machine learning solutions to address problems across multiple facets of healthcare practice and administration. Unfortunately, the ability to derive accurate and informative insights requires more than the ability to execute machine learning models. Rather, a deeper understanding of the data on which the models are run is imperative for their success. While a significant effort has been undertaken to develop models able to process the volume of data obtained during the analysis of millions of digitalized patient records, it is important to remember that volume represents only one aspect of the data. In fact, drawing on data from an increasingly diverse set of sources, healthcare data presents an incredibly complex set of attributes that must be accounted for throughout the machine learning pipeline. This chapter focuses on highlighting such challenges, and is broken down into three distinct components, each representing a phase of the pipeline. We begin with attributes of the data accounted for during preprocessing, then move to considerations during model building, and end with challenges to the interpretation of model output. For each component, we present a discussion around data as it relates to the healthcare domain and offer insight into the challenges each may impose on the efficiency of machine learning techniques.Comment: Healthcare Informatics, Machine Learning, Knowledge Discovery: 20 Pages, 1 Figur

    The development of non-coding RNA ontology

    Get PDF
    Identification of non-coding RNAs (ncRNAs) has been significantly improved over the past decade. On the other hand, semantic annotation of ncRNA data is facing critical challenges due to the lack of a comprehensive ontology to serve as common data elements and data exchange standards in the field. We developed the Non-Coding RNA Ontology (NCRO) to handle this situation. By providing a formally defined ncRNA controlled vocabulary, the NCRO aims to fill a specific and highly needed niche in semantic annotation of large amounts of ncRNA biological and clinical data

    Mining health knowledge graph for health risk prediction

    Get PDF
    Nowadays classification models have been widely adopted in healthcare, aiming at supporting practitioners for disease diagnosis and human error reduction. The challenge is utilising effective methods to mine real-world data in the medical domain, as many different models have been proposed with varying results. A large number of researchers focus on the diversity problem of real-time data sets in classification models. Some previous works developed methods comprising of homogeneous graphs for knowledge representation and then knowledge discovery. However, such approaches are weak in discovering different relationships among elements. In this paper, we propose an innovative classification model for knowledge discovery from patients’ personal health repositories. The model discovers medical domain knowledge from the massive data in the National Health and Nutrition Examination Survey (NHANES). The knowledge is conceptualised in a heterogeneous knowledge graph. On the basis of the model, an innovative method is developed to help uncover potential diseases suffered by people and, furthermore, to classify patients’ health risk. The proposed model is evaluated by comparison to a baseline model also built on the NHANES data set in an empirical experiment. The performance of proposed model is promising. The paper makes significant contributions to the advancement of knowledge in data mining with an innovative classification model specifically crafted for domain-based data. In addition, by accessing the patterns of various observations, the research contributes to the work of practitioners by providing a multifaceted understanding of individual and public health

    Report on the EHCR (Deliverable 26.1)

    Get PDF
    The challenge of richly interpreting electronic health information, in order to populate EHR instances with suitable terms, to provide decision support in the care of individuals, to identify suitable patients for teaching or clinical trials recruitment, and to mine populations of records for public health or to discover new medical knowledge, all require that the heterogeneous clinical entry instances within EHR repositories can be systematically analysed and interpreted. Achieving this requires the combination and co-operation of many different health informatics tools and technologies, underpinned by shared representations of clinical concepts and inferencing formalisms. Much of this work is at the level of R&D, and is well represented across the Semantic Mining consortium. The challenge of WP26 is to build up a vision of the ways in which these historically independent threads of health informatics research can collaborate, and uncover the research challenges that are needed in order to deliver good demonstrations of semantically indexed and richly analysable EHRs. The partners have begun WP26 by acquiring a better knowledge of each other’s areas of endeavour, and are beginning to steer their research interests towards future areas of collaboration

    Social media mining for identification and exploration of health-related information from pregnant women

    Get PDF
    Widespread use of social media has led to the generation of substantial amounts of information about individuals, including health-related information. Social media provides the opportunity to study health-related information about selected population groups who may be of interest for a particular study. In this paper, we explore the possibility of utilizing social media to perform targeted data collection and analysis from a particular population group -- pregnant women. We hypothesize that we can use social media to identify cohorts of pregnant women and follow them over time to analyze crucial health-related information. To identify potentially pregnant women, we employ simple rule-based searches that attempt to detect pregnancy announcements with moderate precision. To further filter out false positives and noise, we employ a supervised classifier using a small number of hand-annotated data. We then collect their posts over time to create longitudinal health timelines and attempt to divide the timelines into different pregnancy trimesters. Finally, we assess the usefulness of the timelines by performing a preliminary analysis to estimate drug intake patterns of our cohort at different trimesters. Our rule-based cohort identification technique collected 53,820 users over thirty months from Twitter. Our pregnancy announcement classification technique achieved an F-measure of 0.81 for the pregnancy class, resulting in 34,895 user timelines. Analysis of the timelines revealed that pertinent health-related information, such as drug-intake and adverse reactions can be mined from the data. Our approach to using user timelines in this fashion has produced very encouraging results and can be employed for other important tasks where cohorts, for which health-related information may not be available from other sources, are required to be followed over time to derive population-based estimates.Comment: 9 page
    • …
    corecore