126 research outputs found

    IMPLEMENTATION OF PHOTOGRAMMETRY TO IMPROVE PROACTIVE ASSESSMENT OF RETAINING WALLS ALONG TRANSPORTATION CORRIDORS

    Get PDF
    Retaining walls are important assets in the transportation infrastructure and assessing their condition is important to prolong their performance and ultimately their design life. Retaining walls are often overlooked and only a few transportation asset management programs consider them in their inventory. Because these programs are few, the techniques used to assess their condition focus on a qualitative assessment as opposed to a quantitative approach. The work presented in this thesis focuses on using photogrammetry to quantitatively assess the condition of retaining walls. Multitemporal photogrammetry is used to develop 3D models of the retaining walls, from which offset displacements are measured to assess their condition. This study presents a case study from a site along M-10 highway in Detroit, MI were several sections of retaining walls have experienced horizontal displacement towards the highway. The results are validated by comparing with field observations and measurements. The limitations of photogrammetry were also studied by using a small scale model in the laboratory. The analysis found that the accuracy of the offset displacement measurements is dependent on the distance between the retaining wall and the sensor, location of the reference points in 3D space, and the focal length of the lenses used by the camera. These parameters were not ideal for the case study at the M-10 highway site, but the results provided consistent trends in the movement of the retaining wall that couldn’t be validated from offset measurements. The findings of this study confirm that photogrammetry shows promise in generating 3D models to provide a quantitative condition assessment for retaining walls within its limitations

    Evaluation of surface defect detection in reinforced concrete bridge decks using terrestrial LiDAR

    Get PDF
    Routine bridge inspections require labor intensive and highly subjective visual interpretation to determine bridge deck surface condition. Light Detection and Ranging (LiDAR) a relatively new class of survey instrument has become a popular and increasingly used technology for providing as-built and inventory data in civil applications. While an increasing number of private and governmental agencies possess terrestrial and mobile LiDAR systems, an understanding of the technology’s capabilities and potential applications continues to evolve. LiDAR is a line-of-sight instrument and as such, care must be taken when establishing scan locations and resolution to allow the capture of data at an adequate resolution for defining features that contribute to the analysis of bridge deck surface condition. Information such as the location, area, and volume of spalling on deck surfaces, undersides, and support columns can be derived from properly collected LiDAR point clouds. The LiDAR point clouds contain information that can provide quantitative surface condition information, resulting in more accurate structural health monitoring. LiDAR scans were collected at three study bridges, each of which displayed a varying degree of degradation. A variety of commercially available analysis tools and an independently developed algorithm written in ArcGIS Python (ArcPy) were used to locate and quantify surface defects such as location, volume, and area of spalls. The results were visual and numerically displayed in a user-friendly web-based decision support tool integrating prior bridge condition metrics for comparison. LiDAR data processing procedures along with strengths and limitations of point clouds for defining features useful for assessing bridge deck condition are discussed. Point cloud density and incidence angle are two attributes that must be managed carefully to ensure data collected are of high quality and useful for bridge condition evaluation. When collected properly to ensure effective evaluation of bridge surface condition, LiDAR data can be analyzed to provide a useful data set from which to derive bridge deck condition information

    Environmental monitoring: landslide assessment and risk management (Test site: Vernazza, Cinque Terre Natural Park)

    Get PDF
    Natural disasters, whether of meteorological origin such as cyclones, floods, tornadoes and droughts or having geological nature such as earthquakes, volcanoes and landslide, are well known for their devastating impacts on human life, economy and environment. Over recent decades, the people and the societies are becoming more vulnerable; although the frequency of natural events may be constant, human activities contribute to their increased intensity. Indeed, every year millions of people are affected by natural disasters globally and, only in the last decade, more than 80% of all disaster-related deaths were caused by natural hazards. The PhD work is part of the activities for the support and development of methodologies useful to improve the management of environmental emergencies. In particular, it focused on the analysis of environmental monitoring and disaster risk management, a systematic approach to identify, to assess and to reduce the potential risks produced by a disaster. This method (Disaster Risk Management) aims to reduce socio-economic vulnerabilities and deals with natural and man-made events. In the PhD thesis, in particular, the slope movements have been evaluated. Slope failures are generally not so costly as earthquakes or major floods, but they are more widespread, and over the years may cause more property loss than any other geological hazard. In many developing regions slope failures constitute a continuing and serious impact on the social and economic structure. Specifically, the Italian territory has always been subject to instability phenomena, because of the geological and morphological characteristic and because of "extreme" weather events that are repeated more frequently than in the past, in relation to climate change. Currently these disasters lead to the largest number of victims and damages to settlements, infrastructure and historical and cultural environmental, after the earthquakes. The urban development, especially in recent decades, resulted in an increase of the assets at risk and unstable areas, often due to constant human intervention badly designed that led to instability also places previously considered "safe". Prevention is therefore essential to minimize the damages caused by landslides The objectives of the conducted research were to investigate the different techniques and to check their potentiality, in order to evaluate the most appropriate instrument for landslide hazard assessment in terms of better compromise between time to perform the analysis and expected results. The attempt is to evaluate which are the best methodologies to use according to the scenario, taking into consideration both reachable accuracies and time constraints. Careful considerations will be performed on strengths, weaknesses and limitations inherent to each methodology. The characteristics associated with geographic, or geospatial, information technologies facilitate the integration of scientific, social and economic data, opening up interesting possibilities for monitoring, assessment and change detection activities, thus enabling better informed interventions in human and natural systems. This is an important factor for the success of emergency operations and for developing valuable natural disaster preparedness, mitigation and prevention systems. The test site was the municipality of Vernazza, which in October 2011 was subject to a extreme rainfall which led to the occurrence of a series of landslides along the Vernazzola stream, which have emphasized the flood event that affected the water cours

    Integrated Remote Sensing Technologies for Condition Assessment of Concrete Bridges

    Get PDF
    Government reports and published research have flagged and brought to public attention the deteriorating condition of a large percentage of bridges in Canada and the United States. Inspection and rehabilitation programs are being implemented to monitor and maintain deteriorated bridge infrastructure. Current practices of bridge inspection and condition assessment rely heavily on visual inspection, limited basic testing such as hammer sounding and chain dragging, and the use of Non-Destructive Testing on ad-hoc basis. These methods suffer from several limitations including subjectivity and uncertainty of visual inspection process, as well as traffic disruption resulting from lane closure during inspection. This research aimed to study, evaluate, and experiment with the use of remote sensing technologies in bridge inspection to minimize drawbacks of current practice. To achieve this objective, two models are developed in this research. The first is a comparative study of remote sensing technologies for concrete bridge condition assessment that provides a systematic approach of selecting most suitable technologies for use in condition assessment. Seven remote sensing technologies are examined in this model. It recommends technologies to be implemented based on a set of flexible multi-attributed criteria. The model provides flexibility to select specific set of these criteria and to define their weights based on user preferences and project objectives. The second model proposes a hybrid system of remote sensing technologies to augment current practice in bridge inspection and eliminate some limitations such as minimizing traffic disruption while performing bridge inspection and enhancing inspection data analysis and visualization. The hybrid system integrates the use of thermal Infrared (IR) and Ground Penetrating Radar (GPR). These technologies have the ability of acquiring data from a distance which minimizes traffic disruption. Results obtained from IR and GPR are in the form of maps of the detected defects on the concrete bridge deck. These maps are used as input in ArcGIS for better representation, visualization, and reporting of the defects and their extents. The hybrid system was examined in a case study of a concrete bridge deck in the city of Laval, Montreal, Quebec, Canada. The results are compared to those obtained using hammer sound test for validation

    Urban sprawl in the state of Missouri : current trends, driving forces, and predicted growth on Missouri's natural landscape

    Get PDF
    Title from PDF of title page (University of Missouri--Columbia, viewed on March 5, 2013).The entire thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file; a non-technical public abstract appears in the public.pdf file.Dissertation advisor: Dr. Hong S. HeIncludes bibliographical references.Vita.Ph.D. University of Missouri--Columbia 2012."December 2012"Missouri reflects a full range of sprawl characteristics that include large metropolitan centers, which led growth in 1980s, and smaller metropolitan and rural areas, which led growth in 1990s. In order to study the historical patterns of sprawl, there is a need to quantitatively and geographically depict the extent and density of impervious surface for three time periods of 1980, 1990, and 2000 for the entire state of Missouri. Mapped impervious surface is the best candidate of ancillary data for dasymetric mapping of population in several comparison studies. The current research examines the performances of dasymetric mapping of population with imperviousness as ancillary data and regression analysis of population using imperviousness as a predictor Results from this work can be aggregated to any geographical unit (hydrologic boundaries, administrative boundaries, etc.). A pilot future urban growth study for the two decades of 1980s and 1990s was done in Missouri. The historical urban growth of the two decades were analyzed then coupled with various predictor variables to investigate the influence of each predictor variables towards the process of urban growth. The knowledge learned from the process is then used to build an urban growth simulation model that is GIS-based with open framework for ease of management and improvement. Pixel level urban growth was simulated for year 2010, 2020 and 2030. This model framework is developed with the ultimate goal of simulating urban growth for the entire state of Missouri.Includes bibliographical reference

    Proceedings of the 3rd Open Source Geospatial Research & Education Symposium OGRS 2014

    Get PDF
    The third Open Source Geospatial Research & Education Symposium (OGRS) was held in Helsinki, Finland, on 10 to 13 June 2014. The symposium was hosted and organized by the Department of Civil and Environmental Engineering, Aalto University School of Engineering, in partnership with the OGRS Community, on the Espoo campus of Aalto University. These proceedings contain the 20 papers presented at the symposium. OGRS is a meeting dedicated to exchanging ideas in and results from the development and use of open source geospatial software in both research and education.  The symposium offers several opportunities for discussing, learning, and presenting results, principles, methods and practices while supporting a primary theme: how to carry out research and educate academic students using, contributing to, and launching open source geospatial initiatives. Participating in open source initiatives can potentially boost innovation as a value creating process requiring joint collaborations between academia, foundations, associations, developer communities and industry. Additionally, open source software can improve the efficiency and impact of university education by introducing open and freely usable tools and research results to students, and encouraging them to get involved in projects. This may eventually lead to new community projects and businesses. The symposium contributes to the validation of the open source model in research and education in geoinformatics

    Engineering and built environment project conference 2014: book of abstracts - Toowoomba, Australia, 22-26 September 2014

    Get PDF
    Book of Abstracts of the USQ Engineering and Built Environment Conference 2014, held Toowoomba, Australia, 22-26 September 2014. These proceedings include extended abstracts of the verbal presentations that are delivered at the project conference. The work reported at the conference is the research undertaken by students in meeting the requirements of courses ENG4111/ENG4112 Research Project for undergraduate or ENG8411/ENG8412 Research Project and Dissertation for postgraduate students
    • 

    corecore