684 research outputs found

    Formal Probabilistic Analysis of a Wireless Sensor Network for Forest Fire Detection

    Full text link
    Wireless Sensor Networks (WSNs) have been widely explored for forest fire detection, which is considered a fatal threat throughout the world. Energy conservation of sensor nodes is one of the biggest challenges in this context and random scheduling is frequently applied to overcome that. The performance analysis of these random scheduling approaches is traditionally done by paper-and-pencil proof methods or simulation. These traditional techniques cannot ascertain 100% accuracy, and thus are not suitable for analyzing a safety-critical application like forest fire detection using WSNs. In this paper, we propose to overcome this limitation by applying formal probabilistic analysis using theorem proving to verify scheduling performance of a real-world WSN for forest fire detection using a k-set randomized algorithm as an energy saving mechanism. In particular, we formally verify the expected values of coverage intensity, the upper bound on the total number of disjoint subsets, for a given coverage intensity, and the lower bound on the total number of nodes.Comment: In Proceedings SCSS 2012, arXiv:1307.802

    Hardware for recognition of human activities: a review of smart home and AAL related technologies

    Get PDF
    Activity recognition (AR) from an applied perspective of ambient assisted living (AAL) and smart homes (SH) has become a subject of great interest. Promising a better quality of life, AR applied in contexts such as health, security, and energy consumption can lead to solutions capable of reaching even the people most in need. This study was strongly motivated because levels of development, deployment, and technology of AR solutions transferred to society and industry are based on software development, but also depend on the hardware devices used. The current paper identifies contributions to hardware uses for activity recognition through a scientific literature review in the Web of Science (WoS) database. This work found four dominant groups of technologies used for AR in SH and AAL—smartphones, wearables, video, and electronic components—and two emerging technologies: Wi-Fi and assistive robots. Many of these technologies overlap across many research works. Through bibliometric networks analysis, the present review identified some gaps and new potential combinations of technologies for advances in this emerging worldwide field and their uses. The review also relates the use of these six technologies in health conditions, health care, emotion recognition, occupancy, mobility, posture recognition, localization, fall detection, and generic activity recognition applications. The above can serve as a road map that allows readers to execute approachable projects and deploy applications in different socioeconomic contexts, and the possibility to establish networks with the community involved in this topic. This analysis shows that the research field in activity recognition accepts that specific goals cannot be achieved using one single hardware technology, but can be using joint solutions, this paper shows how such technology works in this regard

    Green internet of things using UAVs in B5G networks: A review of applications and strategies

    Get PDF
    Recently, Unmanned Aerial Vehicles (UAVs) present a promising advanced technology that can enhance people life quality and smartness of cities dramatically and increase overall economic efficiency. UAVs have attained a significant interest in supporting many applications such as surveillance, agriculture, communication, transportation, pollution monitoring, disaster management, public safety, healthcare, and environmental preservation. Industry 4.0 applications are conceived of intelligent things that can automatically and collaboratively improve beyond 5G (B5G). Therefore, the Internet of Things (IoT) is required to ensure collaboration between the vast multitude of things efficiently anywhere in real-world applications that are monitored in real-time. However, many IoT devices consume a significant amount of energy when transmitting the collected data from surrounding environments. Due to a drone's capability to fly closer to IoT, UAV technology plays a vital role in greening IoT by transmitting collected data to achieve a sustainable, reliable, eco-friendly Industry 4.0. This survey presents an overview of the techniques and strategies proposed recently to achieve green IoT using UAVs infrastructure for a reliable and sustainable smart world. This survey is different from other attempts in terms of concept, focus, and discussion. Finally, various use cases, challenges, and opportunities regarding green IoT using UAVs are presented.This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 847577; and a research grant from Science Foundation Ireland (SFI) under Grant Number 16 / RC / 3918 (Ireland's European Structural and Investment Funds Programmes and the European Regional Development Fund 2014-2020)

    Internet of Things Strategic Research Roadmap

    Get PDF
    Internet of Things (IoT) is an integrated part of Future Internet including existing and evolving Internet and network developments and could be conceptually defined as a dynamic global network infrastructure with self configuring capabilities based on standard and interoperable communication protocols where physical and virtual “things” have identities, physical attributes, and virtual personalities, use intelligent interfaces, and are seamlessly integrated into the information network

    Mechatronic Systems

    Get PDF
    Mechatronics, the synergistic blend of mechanics, electronics, and computer science, has evolved over the past twenty five years, leading to a novel stage of engineering design. By integrating the best design practices with the most advanced technologies, mechatronics aims at realizing high-quality products, guaranteeing at the same time a substantial reduction of time and costs of manufacturing. Mechatronic systems are manifold and range from machine components, motion generators, and power producing machines to more complex devices, such as robotic systems and transportation vehicles. With its twenty chapters, which collect contributions from many researchers worldwide, this book provides an excellent survey of recent work in the field of mechatronics with applications in various fields, like robotics, medical and assistive technology, human-machine interaction, unmanned vehicles, manufacturing, and education. We would like to thank all the authors who have invested a great deal of time to write such interesting chapters, which we are sure will be valuable to the readers. Chapters 1 to 6 deal with applications of mechatronics for the development of robotic systems. Medical and assistive technologies and human-machine interaction systems are the topic of chapters 7 to 13.Chapters 14 and 15 concern mechatronic systems for autonomous vehicles. Chapters 16-19 deal with mechatronics in manufacturing contexts. Chapter 20 concludes the book, describing a method for the installation of mechatronics education in schools
    • …
    corecore