14,372 research outputs found

    Maximum Likelihood-based Online Adaptation of Hyper-parameters in CMA-ES

    Get PDF
    The Covariance Matrix Adaptation Evolution Strategy (CMA-ES) is widely accepted as a robust derivative-free continuous optimization algorithm for non-linear and non-convex optimization problems. CMA-ES is well known to be almost parameterless, meaning that only one hyper-parameter, the population size, is proposed to be tuned by the user. In this paper, we propose a principled approach called self-CMA-ES to achieve the online adaptation of CMA-ES hyper-parameters in order to improve its overall performance. Experimental results show that for larger-than-default population size, the default settings of hyper-parameters of CMA-ES are far from being optimal, and that self-CMA-ES allows for dynamically approaching optimal settings.Comment: 13th International Conference on Parallel Problem Solving from Nature (PPSN 2014) (2014

    Empirical Evaluation of Contextual Policy Search with a Comparison-based Surrogate Model and Active Covariance Matrix Adaptation

    Full text link
    Contextual policy search (CPS) is a class of multi-task reinforcement learning algorithms that is particularly useful for robotic applications. A recent state-of-the-art method is Contextual Covariance Matrix Adaptation Evolution Strategies (C-CMA-ES). It is based on the standard black-box optimization algorithm CMA-ES. There are two useful extensions of CMA-ES that we will transfer to C-CMA-ES and evaluate empirically: ACM-ES, which uses a comparison-based surrogate model, and aCMA-ES, which uses an active update of the covariance matrix. We will show that improvements with these methods can be impressive in terms of sample-efficiency, although this is not relevant any more for the robotic domain.Comment: Supplementary material for poster paper accepted at GECCO 2019; https://doi.org/10.1145/3319619.332193

    Event-Driven Network Model for Space Mission Optimization with High-Thrust and Low-Thrust Spacecraft

    Get PDF
    Numerous high-thrust and low-thrust space propulsion technologies have been developed in the recent years with the goal of expanding space exploration capabilities; however, designing and optimizing a multi-mission campaign with both high-thrust and low-thrust propulsion options are challenging due to the coupling between logistics mission design and trajectory evaluation. Specifically, this computational burden arises because the deliverable mass fraction (i.e., final-to-initial mass ratio) and time of flight for low-thrust trajectories can can vary with the payload mass; thus, these trajectory metrics cannot be evaluated separately from the campaign-level mission design. To tackle this challenge, this paper develops a novel event-driven space logistics network optimization approach using mixed-integer linear programming for space campaign design. An example case of optimally designing a cislunar propellant supply chain to support multiple lunar surface access missions is used to demonstrate this new space logistics framework. The results are compared with an existing stochastic combinatorial formulation developed for incorporating low-thrust propulsion into space logistics design; our new approach provides superior results in terms of cost as well as utilization of the vehicle fleet. The event-driven space logistics network optimization method developed in this paper can trade off cost, time, and technology in an automated manner to optimally design space mission campaigns.Comment: 38 pages; 11 figures; Journal of Spacecraft and Rockets (Accepted); previous version presented at the AAS/AIAA Astrodynamics Specialist Conference, 201

    Algorithm Portfolio for Individual-based Surrogate-Assisted Evolutionary Algorithms

    Full text link
    Surrogate-assisted evolutionary algorithms (SAEAs) are powerful optimisation tools for computationally expensive problems (CEPs). However, a randomly selected algorithm may fail in solving unknown problems due to no free lunch theorems, and it will cause more computational resource if we re-run the algorithm or try other algorithms to get a much solution, which is more serious in CEPs. In this paper, we consider an algorithm portfolio for SAEAs to reduce the risk of choosing an inappropriate algorithm for CEPs. We propose two portfolio frameworks for very expensive problems in which the maximal number of fitness evaluations is only 5 times of the problem's dimension. One framework named Par-IBSAEA runs all algorithm candidates in parallel and a more sophisticated framework named UCB-IBSAEA employs the Upper Confidence Bound (UCB) policy from reinforcement learning to help select the most appropriate algorithm at each iteration. An effective reward definition is proposed for the UCB policy. We consider three state-of-the-art individual-based SAEAs on different problems and compare them to the portfolios built from their instances on several benchmark problems given limited computation budgets. Our experimental studies demonstrate that our proposed portfolio frameworks significantly outperform any single algorithm on the set of benchmark problems
    corecore