9,054 research outputs found

    Surrogate Functions for Maximizing Precision at the Top

    Full text link
    The problem of maximizing precision at the top of a ranked list, often dubbed Precision@k (prec@k), finds relevance in myriad learning applications such as ranking, multi-label classification, and learning with severe label imbalance. However, despite its popularity, there exist significant gaps in our understanding of this problem and its associated performance measure. The most notable of these is the lack of a convex upper bounding surrogate for prec@k. We also lack scalable perceptron and stochastic gradient descent algorithms for optimizing this performance measure. In this paper we make key contributions in these directions. At the heart of our results is a family of truly upper bounding surrogates for prec@k. These surrogates are motivated in a principled manner and enjoy attractive properties such as consistency to prec@k under various natural margin/noise conditions. These surrogates are then used to design a class of novel perceptron algorithms for optimizing prec@k with provable mistake bounds. We also devise scalable stochastic gradient descent style methods for this problem with provable convergence bounds. Our proofs rely on novel uniform convergence bounds which require an in-depth analysis of the structural properties of prec@k and its surrogates. We conclude with experimental results comparing our algorithms with state-of-the-art cutting plane and stochastic gradient algorithms for maximizing [email protected]: To appear in the the proceedings of the 32nd International Conference on Machine Learning (ICML 2015

    Context-aware CNNs for person head detection

    Full text link
    Person detection is a key problem for many computer vision tasks. While face detection has reached maturity, detecting people under a full variation of camera view-points, human poses, lighting conditions and occlusions is still a difficult challenge. In this work we focus on detecting human heads in natural scenes. Starting from the recent local R-CNN object detector, we extend it with two types of contextual cues. First, we leverage person-scene relations and propose a Global CNN model trained to predict positions and scales of heads directly from the full image. Second, we explicitly model pairwise relations among objects and train a Pairwise CNN model using a structured-output surrogate loss. The Local, Global and Pairwise models are combined into a joint CNN framework. To train and test our full model, we introduce a large dataset composed of 369,846 human heads annotated in 224,740 movie frames. We evaluate our method and demonstrate improvements of person head detection against several recent baselines in three datasets. We also show improvements of the detection speed provided by our model.Comment: To appear in International Conference on Computer Vision (ICCV), 201

    Active learning for feasible region discovery

    Get PDF
    Often in the design process of an engineer, the design specifications of the system are not completely known initially. However, usually there are some physical constraints which are already known, corresponding to a region of interest in the design space that is called feasible. These constraints often have no analytical form but need to be characterised based on expensive simulations or measurements. Therefore, it is important that the feasible region can be modeled sufficiently accurate using only a limited amount of samples. This can be solved by using active learning techniques that minimize the amount of samples w.r.t. what we try to model. Most active learning strategies focus on classification models or regression models with classification accuracy and regression accuracy in mind respectively. In this work, regression models of the constraints are used, but only the (in) feasibility is of interest. To tackle this problem, an information-theoretic sampling strategy is constructed to discover these regions. The proposed method is then tested on two synthetic examples and one engineering example and proves to outperform the current state-of-the-art
    • …
    corecore