1,537 research outputs found

    Efficient Benchmarking of Algorithm Configuration Procedures via Model-Based Surrogates

    Get PDF
    The optimization of algorithm (hyper-)parameters is crucial for achieving peak performance across a wide range of domains, ranging from deep neural networks to solvers for hard combinatorial problems. The resulting algorithm configuration (AC) problem has attracted much attention from the machine learning community. However, the proper evaluation of new AC procedures is hindered by two key hurdles. First, AC benchmarks are hard to set up. Second and even more significantly, they are computationally expensive: a single run of an AC procedure involves many costly runs of the target algorithm whose performance is to be optimized in a given AC benchmark scenario. One common workaround is to optimize cheap-to-evaluate artificial benchmark functions (e.g., Branin) instead of actual algorithms; however, these have different properties than realistic AC problems. Here, we propose an alternative benchmarking approach that is similarly cheap to evaluate but much closer to the original AC problem: replacing expensive benchmarks by surrogate benchmarks constructed from AC benchmarks. These surrogate benchmarks approximate the response surface corresponding to true target algorithm performance using a regression model, and the original and surrogate benchmark share the same (hyper-)parameter space. In our experiments, we construct and evaluate surrogate benchmarks for hyperparameter optimization as well as for AC problems that involve performance optimization of solvers for hard combinatorial problems, drawing training data from the runs of existing AC procedures. We show that our surrogate benchmarks capture overall important characteristics of the AC scenarios, such as high- and low-performing regions, from which they were derived, while being much easier to use and orders of magnitude cheaper to evaluate

    YAHPO Gym -- An Efficient Multi-Objective Multi-Fidelity Benchmark for Hyperparameter Optimization

    Full text link
    When developing and analyzing new hyperparameter optimization methods, it is vital to empirically evaluate and compare them on well-curated benchmark suites. In this work, we propose a new set of challenging and relevant benchmark problems motivated by desirable properties and requirements for such benchmarks. Our new surrogate-based benchmark collection consists of 14 scenarios that in total constitute over 700 multi-fidelity hyperparameter optimization problems, which all enable multi-objective hyperparameter optimization. Furthermore, we empirically compare surrogate-based benchmarks to the more widely-used tabular benchmarks, and demonstrate that the latter may produce unfaithful results regarding the performance ranking of HPO methods. We examine and compare our benchmark collection with respect to defined requirements and propose a single-objective as well as a multi-objective benchmark suite on which we compare 7 single-objective and 7 multi-objective optimizers in a benchmark experiment. Our software is available at [https://github.com/slds-lmu/yahpo_gym].Comment: Accepted at the First Conference on Automated Machine Learning (Main Track). 39 pages, 12 tables, 10 figures, 1 listin

    Basic Enhancement Strategies When Using Bayesian Optimization for Hyperparameter Tuning of Deep Neural Networks

    Get PDF
    Compared to the traditional machine learning models, deep neural networks (DNN) are known to be highly sensitive to the choice of hyperparameters. While the required time and effort for manual tuning has been rapidly decreasing for the well developed and commonly used DNN architectures, undoubtedly DNN hyperparameter optimization will continue to be a major burden whenever a new DNN architecture needs to be designed, a new task needs to be solved, a new dataset needs to be addressed, or an existing DNN needs to be improved further. For hyperparameter optimization of general machine learning problems, numerous automated solutions have been developed where some of the most popular solutions are based on Bayesian Optimization (BO). In this work, we analyze four fundamental strategies for enhancing BO when it is used for DNN hyperparameter optimization. Specifically, diversification, early termination, parallelization, and cost function transformation are investigated. Based on the analysis, we provide a simple yet robust algorithm for DNN hyperparameter optimization - DEEP-BO (Diversified, Early-termination-Enabled, and Parallel Bayesian Optimization). When evaluated over six DNN benchmarks, DEEP-BO mostly outperformed well-known solutions including GP-Hedge, BOHB, and the speed-up variants that use Median Stopping Rule or Learning Curve Extrapolation. In fact, DEEP-BO consistently provided the top, or at least close to the top, performance over all the benchmark types that we have tested. This indicates that DEEP-BO is a robust solution compared to the existing solutions. The DEEP-BO code is publicly available at <uri>https://github.com/snu-adsl/DEEP-BO</uri>
    corecore