1,439 research outputs found

    State-of-the-art in aerodynamic shape optimisation methods

    Get PDF
    Aerodynamic optimisation has become an indispensable component for any aerodynamic design over the past 60 years, with applications to aircraft, cars, trains, bridges, wind turbines, internal pipe flows, and cavities, among others, and is thus relevant in many facets of technology. With advancements in computational power, automated design optimisation procedures have become more competent, however, there is an ambiguity and bias throughout the literature with regards to relative performance of optimisation architectures and employed algorithms. This paper provides a well-balanced critical review of the dominant optimisation approaches that have been integrated with aerodynamic theory for the purpose of shape optimisation. A total of 229 papers, published in more than 120 journals and conference proceedings, have been classified into 6 different optimisation algorithm approaches. The material cited includes some of the most well-established authors and publications in the field of aerodynamic optimisation. This paper aims to eliminate bias toward certain algorithms by analysing the limitations, drawbacks, and the benefits of the most utilised optimisation approaches. This review provides comprehensive but straightforward insight for non-specialists and reference detailing the current state for specialist practitioners

    Efficient Global Optimisation of Microwave Antennas Based on a Parallel Surrogate Model-assisted Evolutionary Algorithm

    Get PDF
    Computational efficiency is a major challenge for evolutionary algorithm (EA)-based antenna optimisation methods due to the computationally expensive electromagnetic simulations. Surrogate model-assisted EAs considerably improve the optimisation efficiency, but most of them are sequential methods, which cannot benefit from parallel simulation of multiple candidate designs for further speed improvement. To address this problem, a new method, called parallel surrogate model-assisted hybrid differential evolution for antenna optimisation (PSADEA), is proposed. The performance of PSADEA is demonstrated by a dielectric resonator antenna, a Yagi-Uda antenna, and three mathematical benchmark problems. Experimental results show high operational performance in a few hours using a normal desktop 4-core workstation. Comparisons show that PSADEA possesses significant advantages in efficiency compared to a state-of-the-art surrogate model-assisted EA for antenna optimisation, the standard parallel differential evolution algorithm, and parallel particle swarm optimisation. In addition, PSADEA also shows stronger optimisation ability compared to the above reference methods for challenging design cases

    Towards an evolvable cancer treatment simulator

    Get PDF
    © 2019 Elsevier B.V. The use of high-fidelity computational simulations promises to enable high-throughput hypothesis testing and optimisation of cancer therapies. However, increasing realism comes at the cost of increasing computational requirements. This article explores the use of surrogate-assisted evolutionary algorithms to optimise the targeted delivery of a therapeutic compound to cancerous tumour cells with the multicellular simulator, PhysiCell. The use of both Gaussian process models and multi-layer perceptron neural network surrogate models are investigated. We find that evolutionary algorithms are able to effectively explore the parameter space of biophysical properties within the agent-based simulations, minimising the resulting number of cancerous cells after a period of simulated treatment. Both model-assisted algorithms are found to outperform a standard evolutionary algorithm, demonstrating their ability to perform a more effective search within the very small evaluation budget. This represents the first use of efficient evolutionary algorithms within a high-throughput multicellular computing approach to find therapeutic design optima that maximise tumour regression

    Solving Expensive Optimization Problems in Dynamic Environments with Meta-learning

    Full text link
    Dynamic environments pose great challenges for expensive optimization problems, as the objective functions of these problems change over time and thus require remarkable computational resources to track the optimal solutions. Although data-driven evolutionary optimization and Bayesian optimization (BO) approaches have shown promise in solving expensive optimization problems in static environments, the attempts to develop such approaches in dynamic environments remain rarely unexplored. In this paper, we propose a simple yet effective meta-learning-based optimization framework for solving expensive dynamic optimization problems. This framework is flexible, allowing any off-the-shelf continuously differentiable surrogate model to be used in a plug-in manner, either in data-driven evolutionary optimization or BO approaches. In particular, the framework consists of two unique components: 1) the meta-learning component, in which a gradient-based meta-learning approach is adopted to learn experience (effective model parameters) across different dynamics along the optimization process. 2) the adaptation component, where the learned experience (model parameters) is used as the initial parameters for fast adaptation in the dynamic environment based on few shot samples. By doing so, the optimization process is able to quickly initiate the search in a new environment within a strictly restricted computational budget. Experiments demonstrate the effectiveness of the proposed algorithm framework compared to several state-of-the-art algorithms on common benchmark test problems under different dynamic characteristics

    A Data-Driven Evolutionary Transfer Optimization for Expensive Problems in Dynamic Environments

    Full text link
    Many real-world problems are usually computationally costly and the objective functions evolve over time. Data-driven, a.k.a. surrogate-assisted, evolutionary optimization has been recognized as an effective approach for tackling expensive black-box optimization problems in a static environment whereas it has rarely been studied under dynamic environments. This paper proposes a simple but effective transfer learning framework to empower data-driven evolutionary optimization to solve dynamic optimization problems. Specifically, it applies a hierarchical multi-output Gaussian process to capture the correlation between data collected from different time steps with a linearly increased number of hyperparameters. Furthermore, an adaptive source task selection along with a bespoke warm staring initialization mechanisms are proposed to better leverage the knowledge extracted from previous optimization exercises. By doing so, the data-driven evolutionary optimization can jump start the optimization in the new environment with a strictly limited computational budget. Experiments on synthetic benchmark test problems and a real-world case study demonstrate the effectiveness of our proposed algorithm against nine state-of-the-art peer algorithms

    Constrained, mixed-integer and multi-objective optimisation of building designs by NSGA-II with fitness approximation

    Get PDF
    Reducing building energy demand is a crucial part of the global response to climate change, and evolutionary algorithms (EAs) coupled to building performance simulation (BPS) are an increasingly popular tool for this task. Further uptake of EAs in this industry is hindered by BPS being computationally intensive: optimisation runs taking days or longer are impractical in a time-competitive environment. Surrogate fitness models are a possible solution to this problem, but few approaches have been demonstrated for multi-objective, constrained or discrete problems, typical of the optimisation problems in building design. This paper presents a modified version of a surrogate based on radial basis function networks, combined with a deterministic scheme to deal with approximation error in the constraints by allowing some infeasible solutions in the population. Different combinations of these are integrated with Non-Dominated Sorting Genetic Algorithm II (NSGA-II) and applied to three instances of a typical building optimisation problem. The comparisons show that the surrogate and constraint handling combined offer improved run-time and final solution quality. The paper concludes with detailed investigations of the constraint handling and fitness landscape to explain differences in performance

    Adaptive swarm optimisation assisted surrogate model for pipeline leak detection and characterisation.

    Get PDF
    Pipelines are often subject to leakage due to ageing, corrosion and weld defects. It is difficult to avoid pipeline leakage as the sources of leaks are diverse. Various pipeline leakage detection methods, including fibre optic, pressure point analysis and numerical modelling, have been proposed during the last decades. One major issue of these methods is distinguishing the leak signal without giving false alarms. Considering that the data obtained by these traditional methods are digital in nature, the machine learning model has been adopted to improve the accuracy of pipeline leakage detection. However, most of these methods rely on a large training dataset for accurate training models. It is difficult to obtain experimental data for accurate model training. Some of the reasons include the huge cost of an experimental setup for data collection to cover all possible scenarios, poor accessibility to the remote pipeline, and labour-intensive experiments. Moreover, datasets constructed from data acquired in laboratory or field tests are usually imbalanced, as leakage data samples are generated from artificial leaks. Computational fluid dynamics (CFD) offers the benefits of providing detailed and accurate pipeline leakage modelling, which may be difficult to obtain experimentally or with the aid of analytical approach. However, CFD simulation is typically time-consuming and computationally expensive, limiting its pertinence in real-time applications. In order to alleviate the high computational cost of CFD modelling, this study proposed a novel data sampling optimisation algorithm, called Adaptive Particle Swarm Optimisation Assisted Surrogate Model (PSOASM), to systematically select simulation scenarios for simulation in an adaptive and optimised manner. The algorithm was designed to place a new sample in a poorly sampled region or regions in parameter space of parametrised leakage scenarios, which the uniform sampling methods may easily miss. This was achieved using two criteria: population density of the training dataset and model prediction fitness value. The model prediction fitness value was used to enhance the global exploration capability of the surrogate model, while the population density of training data samples is beneficial to the local accuracy of the surrogate model. The proposed PSOASM was compared with four conventional sequential sampling approaches and tested on six commonly used benchmark functions in the literature. Different machine learning algorithms are explored with the developed model. The effect of the initial sample size on surrogate model performance was evaluated. Next, pipeline leakage detection analysis - with much emphasis on a multiphase flow system - was investigated in order to find the flow field parameters that provide pertinent indicators in pipeline leakage detection and characterisation. Plausible leak scenarios which may occur in the field were performed for the gas-liquid pipeline using a three-dimensional RANS CFD model. The perturbation of the pertinent flow field indicators for different leak scenarios is reported, which is expected to help in improving the understanding of multiphase flow behaviour induced by leaks. The results of the simulations were validated against the latest experimental and numerical data reported in the literature. The proposed surrogate model was later applied to pipeline leak detection and characterisation. The CFD modelling results showed that fluid flow parameters are pertinent indicators in pipeline leak detection. It was observed that upstream pipeline pressure could serve as a critical indicator for detecting leakage, even if the leak size is small. In contrast, the downstream flow rate is a dominant leakage indicator if the flow rate monitoring is chosen for leak detection. The results also reveal that when two leaks of different sizes co-occur in a single pipe, detecting the small leak becomes difficult if its size is below 25% of the large leak size. However, in the event of a double leak with equal dimensions, the leak closer to the pipe upstream is easier to detect. The results from all the analyses demonstrate the PSOASM algorithm's superiority over the well-known sequential sampling schemes employed for evaluation. The test results show that the PSOASM algorithm can be applied for pipeline leak detection with limited training datasets and provides a general framework for improving computational efficiency using adaptive surrogate modelling in various real-life applications

    Efficient Global Optimization of Actuator Based on A Surrogate Model Assisted Hybrid Algorithm

    Get PDF
    Computationally expensive numerical techniques are often involved in the actuator design optimization process, where efficiency is a major issue. Although surrogate-based optimization is a promising solution, the challenge to the optimization efficiency is still considerable. Aiming to address this challenge, a new method, called the parallel adjoint sensitivity and Gaussian process assisted hybrid optimization technique (PAGHO), is presented. The central concept is a new optimization framework employing computationally cheap partial derivatives obtained by the adjoint sensitivity method to tackle computationally expensive infill sampling for surrogate-based optimization. A silicon microactuator and a mathematical benchmark problem with different kinds of challenges are selected as the test cases. Comparison results show that PAGHO can obtain comparable results with popular global optimization methods, while at the same time having significant advantages in efficiency compared to standard global optimization methods and state-of-the-art surrogate-based optimization methods

    Multi-objective Optimization in Traffic Signal Control

    Get PDF
    Traffic Signal Control systems are one of the most popular Intelligent Transport Systems and they are widely used around the world to regulate traffic flow. Recently, complex optimization techniques have been applied to traffic signal control systems to improve their performance. Traffic simulators are one of the most popular tools to evaluate the performance of a potential solution in traffic signal optimization. For that reason, researchers commonly optimize traffic signal timing by using simulation-based approaches. Although evaluating solutions using microscopic traffic simulators has several advantages, the simulation is very time-consuming. Multi-objective Evolutionary Algorithms (MOEAs) are in many ways superior to traditional search methods. They have been widely utilized in traffic signal optimization problems. However, running MOEAs on traffic optimization problems using microscopic traffic simulators to estimate the effectiveness of solutions is time-consuming. Thus, MOEAs which can produce good solutions at a reasonable processing time, especially at an early stage, is required. Anytime behaviour of an algorithm indicates its ability to provide as good a solution as possible at any time during its execution. Therefore, optimization approaches which have good anytime behaviour are desirable in evaluation traffic signal optimization. Moreover, small population sizes are inevitable for scenarios where processing capabilities are limited but require quick response times. In this work, two novel optimization algorithms are introduced that improve anytime behaviour and can work effectively with various population sizes. NS-LS is a hybrid of Non-dominated Sorting Genetic Algorithm II (NSGA-II) and a local search which has the ability to predict a potential search direction. NS-LS is able to produce good solutions at any running time, therefore having good anytime behaviour. Utilizing a local search can help to accelerate the convergence rate, however, computational cost is not considered in NS-LS. A surrogate-assisted approach based on local search (SA-LS) which is an enhancement of NS-LS is also introduced. SA-LS uses a surrogate model constructed using solutions which already have been evaluated by a traffic simulator in previous generations. NS-LS and SA-LS are evaluated on the well-known Benchmark test functions: ZDT1 and ZDT2, and two real-world traffic scenarios: Andrea Costa and Pasubio. The proposed algorithms are also compared to NSGA-II and Multiobjective Evolutionary Algorithm based on Decomposition (MOEA/D). The results show that NS-LS and SA-LS can effectively optimize traffic signal timings of the studied scenarios. The results also confirm that NS-LS and SA-LS have good anytime behaviour and can work well with different population sizes. Furthermore, SA-LS also showed to produce mostly superior results as compared to NS-LS, NSGA-II, and MOEA/D.Ministry of Education and Training - Vietna

    A Parallel Surrogate Model Assisted Evolutionary Algorithm for Electromagnetic Design Optimization

    Get PDF
    Optimization efficiency is a major challenge for electromagnetic (EM) device, circuit, and machine design. Although both surrogate model-assisted evolutionary algorithms (SAEAs) and parallel computing are playing important roles in addressing this challenge, there is little research that investigates their integration to benefit from both techniques. In this paper, a new method, called parallel SAEA for electromagnetic design (PSAED), is proposed. A state-of-the-art SAEA framework, surrogate model-aware evolutionary search, is used as the foundation of PSAED. Considering the landscape characteristics of EM design problems, three differential evolution mutation operators are selected and organized in a particular way. A new SAEA framework is then proposed to make use of the selected mutation operators in a parallel computing environment. PSAED is tested by a micromirror and a dielectric resonator antenna as well as four mathematical benchmark problems of various complexity. Comparisons with state-of-the-art methods verify the advantages of PSAED in terms of efficiency and optimization capacity
    corecore