1,427 research outputs found

    Methods and Tools for Objective Assessment of Psychomotor Skills in Laparoscopic Surgery

    Get PDF
    Training and assessment paradigms for laparoscopic surgical skills are evolving from traditional mentor–trainee tutorship towards structured, more objective and safer programs. Accreditation of surgeons requires reaching a consensus on metrics and tasks used to assess surgeons’ psychomotor skills. Ongoing development of tracking systems and software solutions has allowed for the expansion of novel training and assessment means in laparoscopy. The current challenge is to adapt and include these systems within training programs, and to exploit their possibilities for evaluation purposes. This paper describes the state of the art in research on measuring and assessing psychomotor laparoscopic skills. It gives an overview on tracking systems as well as on metrics and advanced statistical and machine learning techniques employed for evaluation purposes. The later ones have a potential to be used as an aid in deciding on the surgical competence level, which is an important aspect when accreditation of the surgeons in particular, and patient safety in general, are considered. The prospective of these methods and tools make them complementary means for surgical assessment of motor skills, especially in the early stages of training. Successful examples such as the Fundamentals of Laparoscopic Surgery should help drive a paradigm change to structured curricula based on objective parameters. These may improve the accreditation of new surgeons, as well as optimize their already overloaded training schedules

    AUTOMATIC PERFORMANCE LEVEL ASSESSMENT IN MINIMALLY INVASIVE SURGERY USING COORDINATED SENSORS AND COMPOSITE METRICS

    Get PDF
    Skills assessment in Minimally Invasive Surgery (MIS) has been a challenge for training centers for a long time. The emerging maturity of camera-based systems has the potential to transform problems into solutions in many different areas, including MIS. The current evaluation techniques for assessing the performance of surgeons and trainees are direct observation, global assessments, and checklists. These techniques are mostly subjective and can, therefore, involve a margin of bias. The current automated approaches are all implemented using mechanical or electromagnetic sensors, which suffer limitations and influence the surgeon’s motion. Thus, evaluating the skills of the MIS surgeons and trainees objectively has become an increasing concern. In this work, we integrate and coordinate multiple camera sensors to assess the performance of MIS trainees and surgeons. This study aims at developing an objective data-driven assessment that takes advantage of multiple coordinated sensors. The technical framework for the study is a synchronized network of sensors that captures large sets of measures from the training environment. The measures are then, processed to produce a reliable set of individual and composed metrics, coordinated in time, that suggest patterns of skill development. The sensors are non-invasive, real-time, and coordinated over many cues such as, eye movement, external shots of body and instruments, and internal shots of the operative field. The platform is validated by a case study of 17 subjects and 70 sessions. The results show that the platform output is highly accurate and reliable in detecting patterns of skills development and predicting the skill level of the trainees

    Eye movements in surgery: A literature review

    Get PDF
    With recent advances in eye tracking technology, it is now possible to track surgeons’ eye movements while engaged in a surgical task or when surgical residents practice their surgical skills. Several studies have compared eye movements of surgical experts and novices, developed techniques to assess surgical skill on the basis of eye movements, and examined the role of eye movements in surgical training. We here provide an overview of these studies with a focus on the methodological aspects. We conclude that the different studies of eye movements in surgery suggest that the recording of eye movements may be beneficial both for skill assessment and training purposes, although more research will be needed in this field

    Objective and automated assessment of surgical technical skills with IoT systems: A systematic literature review

    Get PDF
    The assessment of surgical technical skills to be acquired by novice surgeons has been traditionally done by an expert surgeon and is therefore of a subjective nature. Nevertheless, the recent advances on IoT, the possibility of incorporating sensors into objects and environments in order to collect large amounts of data, and the progress on machine learning are facilitating a more objective and automated assessment of surgical technical skills. This paper presents a systematic literature review of papers published after 2013 discussing the objective and automated assessment of surgical technical skills. 101 out of an initial list of 537 papers were analyzed to identify: 1) the sensors used; 2) the data collected by these sensors and the relationship between these data, surgical technical skills and surgeons' levels of expertise; 3) the statistical methods and algorithms used to process these data; and 4) the feedback provided based on the outputs of these statistical methods and algorithms. Particularly, 1) mechanical and electromagnetic sensors are widely used for tool tracking, while inertial measurement units are widely used for body tracking; 2) path length, number of sub-movements, smoothness, fixation, saccade and total time are the main indicators obtained from raw data and serve to assess surgical technical skills such as economy, efficiency, hand tremor, or mind control, and distinguish between two or three levels of expertise (novice/intermediate/advanced surgeons); 3) SVM (Support Vector Machines) and Neural Networks are the preferred statistical methods and algorithms for processing the data collected, while new opportunities are opened up to combine various algorithms and use deep learning; and 4) feedback is provided by matching performance indicators and a lexicon of words and visualizations, although there is considerable room for research in the context of feedback and visualizations, taking, for example, ideas from learning analytics.This work was supported in part by the FEDER/Ministerio de Ciencia, Innovación y Universidades;Agencia Estatal de Investigación, through the Smartlet Project under Grant TIN2017-85179-C3-1-R, and in part by the Madrid Regional Government through the e-Madrid-CM Project under Grant S2018/TCS-4307, a project which is co-funded by the European Structural Funds (FSE and FEDER). Partial support has also been received from the European Commission through Erasmus + Capacity Building in the Field of Higher Education projects, more specifically through projects LALA (586120-EPP-1-2017-1-ES-EPPKA2-CBHE-JP), InnovaT (598758-EPP-1-2018-1-AT-EPPKA2-CBHE-JP), and PROF-XXI (609767-EPP-1-2019-1-ES-EPPKA2-CBHE-JP)

    Autonomous Camera Movement for Robotic-Assisted Surgery: A Survey

    Full text link
    In the past decade, Robotic-Assisted Surgery (RAS) has become a widely accepted technique as an alternative to traditional open surgery procedures. The best robotic assistant system should combine both human and robot capabilities under the human control. As a matter of fact robot should collaborate with surgeons in a natural and autonomous way, thus requiring less of the surgeons\u27 attention. In this survey, we provide a comprehensive and structured review of the robotic-assisted surgery and autonomous camera movement for RAS operation. We also discuss several topics, including but not limited to task and gesture recognition, that are closely related to robotic-assisted surgery automation and illustrate several successful applications in various real-world application domains. We hope that this paper will provide a more thorough understanding of the recent advances in camera automation in RSA and offer some future research directions

    Eye-hand coordination patterns of intermediate and novice surgeons in a simulation-based endoscopic surgery training environment

    Get PDF
    Endoscopic surgery procedures require specific skills, such as eye-hand coordination to be developed. Current education programs are facing with problems to provide appropriate skill improvement and assessment methods in this field. This study aims to propose objective metrics for hand-movement skills and assess eye-hand coordination. An experimental study is conducted with 15 surgical residents to test the newly proposed measures. Two computer-based both-handed endoscopic surgery practice scenarios are developed in a simulation environment to gather the participants’ eye-gaze data with the help of an eye tracker as well as the related hand movement data through haptic interfaces. Additionally, participants’ eye-hand coordination skills are analyzed. The results indicate higher correlations in the intermediates’ eye-hand movements compared to the novices. An increase in intermediates’ visual concentration leads to smoother hand movements. Similarly, the novices’ hand movements are shown to remain at a standstill. After the first round of practice, all participants’ eye-hand coordination skills are improved on the specific task targeted in this study. According to these results, it can be concluded that the proposed metrics can potentially provide some additional insights about trainees’ eye-hand coordination skills and help instructional system designers to better address training requirements

    Technical skill assessment in minimally invasive surgery using artificial intelligence: a systematic review.

    Get PDF
    BACKGROUND Technical skill assessment in surgery relies on expert opinion. Therefore, it is time-consuming, costly, and often lacks objectivity. Analysis of intraoperative data by artificial intelligence (AI) has the potential for automated technical skill assessment. The aim of this systematic review was to analyze the performance, external validity, and generalizability of AI models for technical skill assessment in minimally invasive surgery. METHODS A systematic search of Medline, Embase, Web of Science, and IEEE Xplore was performed to identify original articles reporting the use of AI in the assessment of technical skill in minimally invasive surgery. Risk of bias (RoB) and quality of the included studies were analyzed according to Quality Assessment of Diagnostic Accuracy Studies criteria and the modified Joanna Briggs Institute checklists, respectively. Findings were reported according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement. RESULTS In total, 1958 articles were identified, 50 articles met eligibility criteria and were analyzed. Motion data extracted from surgical videos (n = 25) or kinematic data from robotic systems or sensors (n = 22) were the most frequent input data for AI. Most studies used deep learning (n = 34) and predicted technical skills using an ordinal assessment scale (n = 36) with good accuracies in simulated settings. However, all proposed models were in development stage, only 4 studies were externally validated and 8 showed a low RoB. CONCLUSION AI showed good performance in technical skill assessment in minimally invasive surgery. However, models often lacked external validity and generalizability. Therefore, models should be benchmarked using predefined performance metrics and tested in clinical implementation studies
    corecore