20,891 research outputs found

    Assessment of Real-Time 3D Visualization for Cardiothoracic Diagnostic Evaluation and Surgery Planning

    Get PDF
    RATIONALE AND OBJECTIVES: Three-dimensional (3D) real-time volume rendering has demonstrated improvements in clinical care for several areas of radiological imaging. We test whether advanced real-time rendering techniques combined with an effective user interface will allow radiologists and surgeons to improve their performance for cardiothoracic surgery planning and diagnostic evaluation. MATERIAL AND METHODS: An interactive combination 3D and 2D visualization system developed at the University of North Carolina at Chapel Hill was compared against standard tiled 2D slice presentation on a viewbox. The system was evaluated for 23 complex cardiothoracic computed tomographic (CT) cases including heart-lung and lung transplantation, tumor resection, airway stent placement, repair of congenital heart defects, aortic aneurysm repair, and resection of pulmonary arteriovenous malformation. Radiologists and surgeons recorded their impressions with and without the use of the interactive visualization system. RESULTS: The cardiothoracic surgeons reported positive benefits to using the 3D visualizations. The addition of the 3D visualization changed the surgical plan (65% of cases), increased the surgeon's confidence (on average 40% per case), and correlated well with the anatomy found at surgery (95% of cases). The radiologists reported fewer and less major changes than the surgeons in their understanding of the case due to the 3D visualization. They found new findings or additional information about existing findings in 66% of the cases; however, they changed their radiology report in only 14% of the cases. CONCLUSION: With the appropriate choice of 3D real-time volume rendering and a well-designed user interface, both surgeons and radiologists benefit from viewing an interactive 3D visualization in addition to 2D images for surgery planning and diagnostic evaluation of complex cardiothoracic cases. This study finds that 3D visualization is especially helpful to the surgeon in understanding the case, and in communicating and planning the surgery. These results suggest that including real-time 3D visualization would be of clinical benefit for complex cardiothoracic CT cases

    Virtual liver biopsy: image processing and 3D visualization

    Get PDF

    Virtual Reality applied to biomedical engineering

    Get PDF
    Actualment, la realitat virtual esta sent tendència i s'està expandint a l'àmbit mèdic, fent possible l'aparició de nombroses aplicacions dissenyades per entrenar metges i tractar pacients de forma més eficient, així com optimitzar els processos de planificació quirúrgica. La necessitat mèdica i objectiu d'aquest projecte és fer òptim el procés de planificació quirúrgica per a cardiopaties congènites, que compren la reconstrucció en 3D del cor del pacient i la seva integració en una aplicació de realitat virtual. Seguint aquesta línia s’ha combinat un procés de modelat 3D d’imatges de cors obtinguts gracies al Hospital Sant Joan de Déu i el disseny de l’aplicació mitjançant el software Unity 3D gracies a l’empresa VISYON. S'han aconseguit millores en quant al software emprat per a la segmentació i reconstrucció, i s’han assolit funcionalitats bàsiques a l’aplicació com importar, moure, rotar i fer captures de pantalla en 3D de l'òrgan cardíac i així, entendre millor la cardiopatia que s’ha de tractar. El resultat ha estat la creació d'un procés òptim, en el que la reconstrucció en 3D ha aconseguit ser ràpida i precisa, el mètode d’importació a l’app dissenyada molt senzill, i una aplicació que permet una interacció atractiva i intuïtiva, gracies a una experiència immersiva i realista per ajustar-se als requeriments d'eficiència i precisió exigits en el camp mèdic

    New technologies in rhinoplasty : a comprehensive workflow for computer-assisted planning and execution

    Get PDF
    Rhinoplasty in facial cleft patients is among the most challenging types of reconstructive facial surgery due to its variability Advances in 3-dimensional imaging enable improved preoperative assessment in rhinoplasty. In complex cases with bony support irregularities and asymmetry, it is rational to initiate planning with reconstruction of the aberrant substructure (ie, "bottom-up" planning) rather than starting the surgical design with soft-tissue morphing. We present a new comprehensive workflow in which novel advanced technologies are implemented to perform "bottom-up" computer-assisted planning and execution in complex rhinoplasty cases. This workflow enables meticulous planning, use of grafting templates, and 3-dimensional-guided osteotomies with integration of piezotome and intraoperative navigation. Previous reports separately discuss some of these innovations. However, greater benefit lies in the combination of these techniques, with emphasis on preoperative computer analysis, virtual planning, and transfer to the operation theater. Surgeons are seeking new ways to enhance minimally invasive approaches and to obtain predictable and favorable clinical results. The presently introduced workflow allows clinicians to plan complex cases in a simple, effective, and safe manner, with the combination of different techniques to produce consistent results

    Virtual reality training and assessment in laparoscopic rectum surgery

    Get PDF
    Background: Virtual-reality (VR) based simulation techniques offer an efficient and low cost alternative to conventional surgery training. This article describes a VR training and assessment system in laparoscopic rectum surgery. Methods: To give a realistic visual performance of interaction between membrane tissue and surgery tools, a generalized cylinder based collision detection and a multi-layer mass-spring model are presented. A dynamic assessment model is also designed for hierarchy training evaluation. Results: With this simulator, trainees can operate on the virtual rectum with both visual and haptic sensation feedback simultaneously. The system also offers surgeons instructions in real time when improper manipulation happens. The simulator has been tested and evaluated by ten subjects. Conclusions: This prototype system has been verified by colorectal surgeons through a pilot study. They believe the visual performance and the tactile feedback are realistic. It exhibits the potential to effectively improve the surgical skills of trainee surgeons and significantly shorten their learning curve. © 2014 John Wiley & Sons, Ltd

    A novel haptic model and environment for maxillofacial surgical operation planning and manipulation

    Get PDF
    This paper presents a practical method and a new haptic model to support manipulations of bones and their segments during the planning of a surgical operation in a virtual environment using a haptic interface. To perform an effective dental surgery it is important to have all the operation related information of the patient available beforehand in order to plan the operation and avoid any complications. A haptic interface with a virtual and accurate patient model to support the planning of bone cuts is therefore critical, useful and necessary for the surgeons. The system proposed uses DICOM images taken from a digital tomography scanner and creates a mesh model of the filtered skull, from which the jaw bone can be isolated for further use. A novel solution for cutting the bones has been developed and it uses the haptic tool to determine and define the bone-cutting plane in the bone, and this new approach creates three new meshes of the original model. Using this approach the computational power is optimized and a real time feedback can be achieved during all bone manipulations. During the movement of the mesh cutting, a novel friction profile is predefined in the haptical system to simulate the force feedback feel of different densities in the bone

    Quantifying perception of nonlinear elastic tissue models using multidimensional scaling

    Get PDF
    Simplified soft tissue models used in surgical simulations cannot perfectly reproduce all material behaviors. In particular, many tissues exhibit the Poynting effect, which results in normal forces during shearing of tissue and is only observed in nonlinear elastic material models. In order to investigate and quantify the role of the Poynting effect on material discrimination, we performed a multidimensional scaling (MDS) study. Participants were presented with several pairs of shear and normal forces generated by a haptic device during interaction with virtual soft objects. Participants were asked to rate the similarity between the forces felt. The selection of the material parameters – and thus the magnitude of the shear\ud and normal forces – was based on a pre-study prior to the MDS experiment. It was observed that for nonlinear elastic tissue models exhibiting the Poynting effect, MDS analysis indicated that both shear and normal forces affect user perception

    Augmented Reality-based Feedback for Technician-in-the-loop C-arm Repositioning

    Full text link
    Interventional C-arm imaging is crucial to percutaneous orthopedic procedures as it enables the surgeon to monitor the progress of surgery on the anatomy level. Minimally invasive interventions require repeated acquisition of X-ray images from different anatomical views to verify tool placement. Achieving and reproducing these views often comes at the cost of increased surgical time and radiation dose to both patient and staff. This work proposes a marker-free "technician-in-the-loop" Augmented Reality (AR) solution for C-arm repositioning. The X-ray technician operating the C-arm interventionally is equipped with a head-mounted display capable of recording desired C-arm poses in 3D via an integrated infrared sensor. For C-arm repositioning to a particular target view, the recorded C-arm pose is restored as a virtual object and visualized in an AR environment, serving as a perceptual reference for the technician. We conduct experiments in a setting simulating orthopedic trauma surgery. Our proof-of-principle findings indicate that the proposed system can decrease the 2.76 X-ray images required per desired view down to zero, suggesting substantial reductions of radiation dose during C-arm repositioning. The proposed AR solution is a first step towards facilitating communication between the surgeon and the surgical staff, improving the quality of surgical image acquisition, and enabling context-aware guidance for surgery rooms of the future. The concept of technician-in-the-loop design will become relevant to various interventions considering the expected advancements of sensing and wearable computing in the near future

    Fast and adaptive fractal tree-based path planning for programmable bevel tip steerable needles

    Get PDF
    © 2016 IEEE. Steerable needles are a promising technology for minimally invasive surgery, as they can provide access to difficult to reach locations while avoiding delicate anatomical regions. However, due to the unpredictable tissue deformation associated with needle insertion and the complexity of many surgical scenarios, a real-time path planning algorithm with high update frequency would be advantageous. Real-time path planning for nonholonomic systems is commonly used in a broad variety of fields, ranging from aerospace to submarine navigation. In this letter, we propose to take advantage of the architecture of graphics processing units (GPUs) to apply fractal theory and thus parallelize real-time path planning computation. This novel approach, termed adaptive fractal trees (AFT), allows for the creation of a database of paths covering the entire domain, which are dense, invariant, procedurally produced, adaptable in size, and present a recursive structure. The generated cache of paths can in turn be analyzed in parallel to determine the most suitable path in a fraction of a second. The ability to cope with nonholonomic constraints, as well as constraints in the space of states of any complexity or number, is intrinsic to the AFT approach, rendering it highly versatile. Three-dimensional (3-D) simulations applied to needle steering in neurosurgery show that our approach can successfully compute paths in real-time, enabling complex brain navigation
    corecore