92 research outputs found

    Optimized 3D co-registration of ultra-low-field and high-field magnetic resonance images

    Get PDF
    The prototypes of ultra-low-field (ULF) MRI scanners developed in recent years represent new, innovative, cost-effective and safer systems, which are suitable to be integrated in multi-modal (Magnetoencephalography and MRI) devices. Integrated ULF-MRI and MEG scanners could represent an ideal solution to obtain functional (MEG) and anatomical (ULF MRI) information in the same environment, without errors that may limit source reconstruction accuracy. However, the low resolution and signal-to-noise ratio (SNR) of ULF images, as well as their limited coverage, do not generally allow for the construction of an accurate individual volume conductor model suitable for MEG localization. Thus, for practical usage, a high-field (HF) MRI image is also acquired, and the HF-MRI images are co-registered to the ULF-MRI ones. We address here this issue through an optimized pipeline (SWIM-Sliding WIndow grouping supporting Mutual information). The co-registration is performed by an affine transformation, the parameters of which are estimated using Normalized Mutual Information as the cost function, and Adaptive Simulated Annealing as the minimization algorithm. The sub-voxel resolution of the ULF images is handled by a sliding-window approach applying multiple grouping strategies to down-sample HF MRI to the ULF-MRI resolution. The pipeline has been tested on phantom and real data from different ULF-MRI devices, and comparison with well-known toolboxes for fMRI analysis has been performed. Our pipeline always outperformed the fMRI toolboxes (FSL and SPM). The HF-ULF MRI co-registration obtained by means of our pipeline could lead to an effective integration of ULF MRI with MEG, with the aim of improving localization accuracy, but also to help exploit ULF MRI in tumor imaging

    Non-Rigid Registration between Histological and MR Images of the Prostate: A Joint Segmentation and Registration Framework

    Get PDF
    This paper presents a 3D non-rigid registration algorithm between histological and MR images of the prostate with cancer. To compensate for the loss of 3D integrity in the histology sectioning process, series of 2D histological slices are first reconstructed into a 3D histological volume. After that, the 3D histology-MRI registration is obtained by maximizing a) landmark similarity and b) cancer region overlap between the two images. The former aims to capture distortions at prostate boundary and internal bloblike structures; and the latter aims to capture distortions specifically at cancer regions. In particular, landmark similarities, the former, is maximized by an annealing process, where correspondences between the automatically-detected boundary and internal landmarks are iteratively established in a fuzzy-to-deterministic fashion. Cancer region overlap, the latter, is maximized in a joint cancer segmentation and registration framework, where the two interleaved problems – segmentation and registration – inform each other in an iterative fashion. Registration accuracy is established by comparing against human-rater-defined landmarks and by comparing with other methods. The ultimate goal of this registration is to warp the histologically-defined cancer ground truth into MRI, for more thoroughly understanding MRI signal characteristics of the prostate cancerous tissue, which will promote the MRI-based prostate cancer diagnosis in the future studies

    Orientation matching for diffusion tensor image registration.

    Get PDF
    This thesis develops a registration algorithm specifically for diffusion-tensor (DT) images. The proposed approach matches the tensor orientations to find the registration transformation. Early results show that local optimisation does not find the global minimum in registration of DT-MR brain images. Therefore, a global optimisation registration technique is also implemented. This thesis proposes several new similarity measures for DT registration and provides a comparison of them along with several others previously proposed in the literature. The thesis also proposes several new performance evaluation measures to assess registration quality and develops a performance evaluation framework that uses directional coherence and landmark separation. Experiments with direct optimisation demonstrate increased local minima in tensor registration objective functions over scalar registration. Using registration with global optimisation, this thesis compares the performance of scalar-derived similarity measures with those derived from the full tensor. Results suggest that similarity measures derived from the full tensor matrix do not find a more accurate registration than those based on the derived scalar indices. Affine and higher-order polynomial registration is not reliable enough to make a firm conclusion about whether diffusion tensor orientation matching improves the accuracy of registration over registration algorithms that ignore orientation. The main problem preventing a firm conclusion is that the local minima problem persists despite the use of global optimisation, causing poor registration of the regions of interest

    Use of Multicomponent Non-Rigid Registration to Improve Alignment of Serial Oncological PET/CT Studies

    Get PDF
    Non-rigid registration of serial head and neck FDG PET/CT images from a combined scanner can be problematic. Registration techniques typically rely on similarity measures calculated from voxel intensity values; CT-CT registration is superior to PET-PET registration due to the higher quality of anatomical information present in this modality. However, when metal artefacts from dental fillings are present in a pair of CT images, a nonrigid registration will incorrectly attempt to register the two artefacts together since they are strong features compared to the features that represent the actual anatomy. This leads to localised registration errors in the deformation field in the vicinity of the artefacts. Our objective was to develop a registration technique which overcomes these limitations by using combined information from both modalities. To study the effect of artefacts on registration, metal artefacts were simulated with one CT image rotated by a small angle in the sagittal plane. Image pairs containing these simulated artifacts were then registered to evaluate the resulting errors. To improve the registration in the vicinity where there were artefacts, intensity information from the PET images was incorporated using several techniques. A well-established B-splines based non-rigid registration code was reworked to allow multicomponent registration. A similarity measure with four possible weighted components relating to the ways in which the CT and PET information can be combined to drive the registration of a pair of these dual-valued images was employed. Several registration methods based on using this multicomponent similarity measure were implemented with the goal of effectively registering the images containing the simulated artifacts. A method was also developed to swap control point displacements from the PET-derived transformation in the vicinity of the artefact. This method yielded the best result on the simulated images and was evaluated on images where actual dental artifacts were present

    Sub-pixel Registration In Computational Imaging And Applications To Enhancement Of Maxillofacial Ct Data

    Get PDF
    In computational imaging, data acquired by sampling the same scene or object at different times or from different orientations result in images in different coordinate systems. Registration is a crucial step in order to be able to compare, integrate and fuse the data obtained from different measurements. Tomography is the method of imaging a single plane or slice of an object. A Computed Tomography (CT) scan, also known as a CAT scan (Computed Axial Tomography scan), is a Helical Tomography, which traditionally produces a 2D image of the structures in a thin section of the body. It uses X-ray, which is ionizing radiation. Although the actual dose is typically low, repeated scans should be limited. In dentistry, implant dentistry in specific, there is a need for 3D visualization of internal anatomy. The internal visualization is mainly based on CT scanning technologies. The most important technological advancement which dramatically enhanced the clinician\u27s ability to diagnose, treat, and plan dental implants has been the CT scan. Advanced 3D modeling and visualization techniques permit highly refined and accurate assessment of the CT scan data. However, in addition to imperfections of the instrument and the imaging process, it is not uncommon to encounter other unwanted artifacts in the form of bright regions, flares and erroneous pixels due to dental bridges, metal braces, etc. Currently, removing and cleaning up the data from acquisition backscattering imperfections and unwanted artifacts is performed manually, which is as good as the experience level of the technician. On the other hand the process is error prone, since the editing process needs to be performed image by image. We address some of these issues by proposing novel registration methods and using stonecast models of patient\u27s dental imprint as reference ground truth data. Stone-cast models were originally used by dentists to make complete or partial dentures. The CT scan of such stone-cast models can be used to automatically guide the cleaning of patients\u27 CT scans from defects or unwanted artifacts, and also as an automatic segmentation system for the outliers of the CT scan data without use of stone-cast models. Segmented data is subsequently used to clean the data from artifacts using a new proposed 3D inpainting approach

    Robust Algorithms for Registration of 3D Images of Human Brain

    Get PDF
    This thesis is concerned with the process of automatically aligning 3D medical images of human brain. It concentrates on rigid-body matching of Positron Emission Tomography images (PET) and Magnetic Resonance images (MR) within one patient and on non-linear matching of PET images of different patients. In recent years, mutual information has proved to be an excellent criterion for automatic registration of intra-individual images from different modalities. We propose and evaluate a method that combines a multi-resolution optimization of mutual information with an efficient segmentation of background voxels and a modified principal axes algorithm. We show that an acceleration factor of 6-7 can be achieved without loss of accuracy and that the method significantly reduces the rate of unsuccessful registrations. Emphasis was also laid on creation of an automatic registration system that could be used routinely in clinical environment. Non-linear registration tries to reduce the inter-individual variability of shape and structure between two brain images by deforming one image so that homologous regions in both images get aligned. It is an important step of many procedures in medical image processing and analysis. We present a novel algorithm for an automatic non-linear registration of PET images based on hierarchical volume subdivisions and local affine optimizations. It produces a C2-continuous deformation function and guarantees that the deformation is one-to-one. Performance of the algorithm was evaluated on more than 600 clinical PET images
    corecore