27 research outputs found

    Direct immersogeometric fluid flow analysis using B-rep CAD models

    Get PDF
    We present a new method for immersogeometric fluid flow analysis that directly uses the CAD boundary representation (B-rep) of a complex object and immerses it into a locally refined, non-boundary-fitted discretization of the fluid domain. The motivating applications include analyzing the flow over complex geometries, such as moving vehicles, where the detailed geometric features usually require time-consuming, labor-intensive geometry cleanup or mesh manipulation for generating the surrounding boundary-fitted fluid mesh. The proposed method avoids the challenges associated with such procedures. A new method to perform point membership classification of the background mesh quadrature points is also proposed. To faithfully capture the geometry in intersected elements, we implement an adaptive quadrature rule based on the recursive splitting of elements. Dirichlet boundary conditions in intersected elements are enforced weakly in the sense of Nitsche\u27s method. To assess the accuracy of the proposed method, we perform computations of the benchmark problem of flow over a sphere represented using B-rep. Quantities of interest such as drag coefficient are in good agreement with reference values reported in the literature. The results show that the density and distribution of the surface quadrature points are crucial for the weak enforcement of Dirichlet boundary conditions and for obtaining accurate flow solutions. Also, with sufficient levels of surface quadrature element refinement, the quadrature error near the trim curves becomes insignificant. Finally, we demonstrate the effectiveness of our immersogeometric method for high-fidelity industrial scale simulations by performing an aerodynamic analysis of an agricultural tractor directly represented using B-rep

    A system for modelling deformable procedural shapes.

    Get PDF
    This thesis presents a new procedural paradigm for modelling. The method combines the benefit of compact object descriptions found in procedural modelling along with the advantage of the ability to interact in real-time as is found with interactive modelling techniques. The three main components to this paradigm are geometry generators (the creation of basic object shapes), selectors (the specification of a selection volume), and modifiers (the object transformation functions). The user interacts in real-time with the object, and has complete control over the object formation process. Interaction is stored within appropriate nodes in a creation-history list which can be replayed or partially replayed at any time during the creation process. The parameters associated with each interaction are stored within the node, and are available for editing at any time during the creation process. The concepts presented here remove the problems that most modelling software have, in that the arbitrary editing of object parameters is destructive, in the sense that changing the parameter of one node may cause the object to behave unpredictably. This takes place in real-time, rather than off-line. In some cases real-time interaction is made possible by trading visual quality vs. speed of rendering. This results in the object being rendered at a lower quality, and therefore decisions on whether the object parameters need adjustment may be predicated upon a poor representation of the object. The work presented herein attempts to bridge the divide between the two approaches by providing the user with a powerful and descriptive procedural modelling language that is entirely generated through real-time interaction with the geometric object via an intuitive user interface. The main contributions of this work are that it allows: Procedural objects are specified interactively. Modelling takes place independently of representation (meaning the user does not base their modelling on the (mesh) representation, but rather on the shape they see). Changes to the object are coherent and non-destructive

    Expanding Fields of Architectural Discourse and Practice: Curated Works from the P.E.A.R. Journal.

    Get PDF
    Expanding Fields of Architectural Discourse and Practice presents a selection of essays, architectural experiments and works that explore the diversity within the fields of contemporary architectural practice and discourse. Specific in this selection is the question of how and why architecture can and should manifest in a critical and reflective capacity, as well as to examine how the discipline currently resonates with contemporary art practice. It does so by reflecting on the first 10 years of the architectural journal, P.E.A.R. (2009 to 2019). The volume argues that the initial aims of the journal – to explore and celebrate the myriad forms through which architecture can exist – are now more relevant than ever to contemporary architectural discourse and practice
    corecore