451 research outputs found

    Distinct 3D Glyphs with Data Layering for Highly Dense Multivariate Data Plots

    Get PDF
    A carefully constructed scatterplot can reveal plenty about an underlying data set. However, in most cases visually mining and understanding a large multivariate data set requires more finesse, and greater level of interactivity to really grasp the full spectrum of the information being presented. We present a paradigm for glyph design and use in the creation of single plots presenting multiple variables of information. We center our design on two key concepts. The first concept is that visually it is easier to discriminate between completely distinct shapes rather than subtly different ones, specially when partially occluded. The second one is that users ingest information in layers, i.e. in an order of visual relevance. Using this paradigm, we present complex data as binned into desired and relevant discrete categories. We show results in the areas of high energy physics and security, displaying over 6 distinct data variables in each single plot, yielding a clear, highly readable, and effective visualization

    Visuelle Analyse großer Partikeldaten

    Get PDF
    Partikelsimulationen sind eine bewährte und weit verbreitete numerische Methode in der Forschung und Technik. Beispielsweise werden Partikelsimulationen zur Erforschung der Kraftstoffzerstäubung in Flugzeugturbinen eingesetzt. Auch die Entstehung des Universums wird durch die Simulation von dunkler Materiepartikeln untersucht. Die hierbei produzierten Datenmengen sind immens. So enthalten aktuelle Simulationen Billionen von Partikeln, die sich über die Zeit bewegen und miteinander interagieren. Die Visualisierung bietet ein großes Potenzial zur Exploration, Validation und Analyse wissenschaftlicher Datensätze sowie der zugrundeliegenden Modelle. Allerdings liegt der Fokus meist auf strukturierten Daten mit einer regulären Topologie. Im Gegensatz hierzu bewegen sich Partikel frei durch Raum und Zeit. Diese Betrachtungsweise ist aus der Physik als das lagrange Bezugssystem bekannt. Zwar können Partikel aus dem lagrangen in ein reguläres eulersches Bezugssystem, wie beispielsweise in ein uniformes Gitter, konvertiert werden. Dies ist bei einer großen Menge an Partikeln jedoch mit einem erheblichen Aufwand verbunden. Darüber hinaus führt diese Konversion meist zu einem Verlust der Präzision bei gleichzeitig erhöhtem Speicherverbrauch. Im Rahmen dieser Dissertation werde ich neue Visualisierungstechniken erforschen, welche speziell auf der lagrangen Sichtweise basieren. Diese ermöglichen eine effiziente und effektive visuelle Analyse großer Partikeldaten

    Artifact-Based Rendering: Harnessing Natural and Traditional Visual Media for More Expressive and Engaging 3D Visualizations

    Full text link
    We introduce Artifact-Based Rendering (ABR), a framework of tools, algorithms, and processes that makes it possible to produce real, data-driven 3D scientific visualizations with a visual language derived entirely from colors, lines, textures, and forms created using traditional physical media or found in nature. A theory and process for ABR is presented to address three current needs: (i) designing better visualizations by making it possible for non-programmers to rapidly design and critique many alternative data-to-visual mappings; (ii) expanding the visual vocabulary used in scientific visualizations to depict increasingly complex multivariate data; (iii) bringing a more engaging, natural, and human-relatable handcrafted aesthetic to data visualization. New tools and algorithms to support ABR include front-end applets for constructing artifact-based colormaps, optimizing 3D scanned meshes for use in data visualization, and synthesizing textures from artifacts. These are complemented by an interactive rendering engine with custom algorithms and interfaces that demonstrate multiple new visual styles for depicting point, line, surface, and volume data. A within-the-research-team design study provides early evidence of the shift in visualization design processes that ABR is believed to enable when compared to traditional scientific visualization systems. Qualitative user feedback on applications to climate science and brain imaging support the utility of ABR for scientific discovery and public communication.Comment: Published in IEEE VIS 2019, 9 pages of content with 2 pages of references, 12 figure

    Doctor of Philosophy

    Get PDF
    dissertationCorrelation is a powerful relationship measure used in many fields to estimate trends and make forecasts. When the data are complex, large, and high dimensional, correlation identification is challenging. Several visualization methods have been proposed to solve these problems, but they all have limitations in accuracy, speed, or scalability. In this dissertation, we propose a methodology that provides new visual designs that show details when possible and aggregates when necessary, along with robust interactive mechanisms that together enable quick identification and investigation of meaningful relationships in large and high-dimensional data. We propose four techniques using this methodology. Depending on data size and dimensionality, the most appropriate visualization technique can be provided to optimize the analysis performance. First, to improve correlation identification tasks between two dimensions, we propose a new correlation task-specific visualization method called correlation coordinate plot (CCP). CCP transforms data into a powerful coordinate system for estimating the direction and strength of correlations among dimensions. Next, we propose three visualization designs to optimize correlation identification tasks in large and multidimensional data. The first is snowflake visualization (Snowflake), a focus+context layout for exploring all pairwise correlations. The next proposed design is a new interactive design for representing and exploring data relationships in parallel coordinate plots (PCPs) for large data, called data scalable parallel coordinate plots (DSPCP). Finally, we propose a novel technique for storing and accessing the multiway dependencies through visualization (MultiDepViz). We evaluate these approaches by using various use cases, compare them to prior work, and generate user studies to demonstrate how our proposed approaches help users explore correlation in large data efficiently. Our results confirmed that CCP/Snowflake, DSPCP, and MultiDepViz methods outperform some current visualization techniques such as scatterplots (SCPs), PCPs, SCP matrix, Corrgram, Angular Histogram, and UntangleMap in both accuracy and timing. Finally, these approaches are applied in real-world applications such as a debugging tool, large-scale code performance data, and large-scale climate data

    Design and Interpretability of Contour Lines for Visualizing Multivariate Data

    Get PDF
    Multivariate geospatial data are commonly visualized using contour plots, where the plots for various attributes are often examined side by side, or using color blending. As the number of attributes grows, however, these approaches become less efficient. This limitation motivated the use of glyphs, where different attributes are mapped to different pre-attentive features of the glyphs. Since both contour plot overlays and glyphs clutter the underlying map, in this paper we examine whether contour lines, which are already present in map space, can be leveraged to visualize multivariate geospatial data. We present five different designs for stylizing contour lines, and investigate their interpretability using three crowdsourced studies. We evaluated the designs through a set of common geospatial data analysis tasks on a four-dimensional dataset. Our first two studies examined how the contour line width and the number of contour intervals affect interpretability, using synthetic datasets where we controlled the underlying data distribution. Study 1 revealed that the increase of width improves the task performance in most of the designs, specially in completion time, except some scenarios where reducing width does not affect performance where the visibility of the background is critical. In Study 2, we found out that fewer contour intervals lead to less visual clutter, hence improved performance. We then compared the designs in a third study that used both synthetic and real-life meteorological data. The study revealed that the results found using synthetic data were generalizable to the real-life data, as hypothesized. Moreover, we formulated a design recommendation table tuned to give users task- and category-specific design suggestions under various environment constraints. At last, we discuss the comparison between the lab and online versions of study 1 with respect to display size (lab study was done on big screen and vice versa). Our studies show the effectiveness of stylizing contour lines to represent multivariate data, reveal trade-offs among design parameters, and provide designers with important insights into the factors that influence multivariate interpretability. We also show some real-life scenarios where our visualization approach may improve decision making

    A Fast and Scalable System to Visualize Contour Gradient from Spatio-temporal Data

    Get PDF
    Changes in geological processes that span over the years may often go unnoticed due to their inherent noise and variability. Natural phenomena such as riverbank erosion, and climate change in general, is invisible to humans unless appropriate measures are taken to analyze the underlying data. Visualization helps geological sciences to generate scientific insights into such long-term geological events. Commonly used approaches such as side-by-side contour plots and spaghetti plots do not provide a clear idea about the historical spatial trends. To overcome this challenge, we propose an image-gradient based approach called ContourDiff. ContourDiff overlays gradient vector over contour plots to analyze the trends of change across spatial regions and temporal domain. Our approach first aggregates for each location, its value differences from the neighboring points over the temporal domain, and then creates a vector field representing the prominent changes. Finally, it overlays the vectors (differential trends) along the contour paths, revealing the differential trends that the contour lines (isolines) experienced over time. We designed an interface, where users can interact with the generated visualization to reveal changes and trends in geospatial data. We evaluated our system using real-life datasets, consisting of millions of data points, where the visualizations were generated in less than a minute in a single-threaded execution. We show the potential of the system in detecting subtle changes from almost identical images, describe implementation challenges, speed-up techniques, and scope for improvements. Our experimental results reveal that ContourDiff can reliably visualize the differential trends, and provide a new way to explore the change pattern in spatiotemporal data. The expert evaluation of our system using real-life WRF (Weather Research and Forecasting) model output reveals the potential of our technique to generate useful insights on the spatio-temporal trends of geospatial variables
    corecore