15,520 research outputs found

    Alternately denoising and reconstructing unoriented point sets

    Full text link
    We propose a new strategy to bridge point cloud denoising and surface reconstruction by alternately updating the denoised point clouds and the reconstructed surfaces. In Poisson surface reconstruction, the implicit function is generated by a set of smooth basis functions centered at the octnodes. When the octree depth is properly selected, the reconstructed surface is a good smooth approximation of the noisy point set. Our method projects the noisy points onto the surface and alternately reconstructs and projects the point set. We use the iterative Poisson surface reconstruction (iPSR) to support unoriented surface reconstruction. Our method iteratively performs iPSR and acts as an outer loop of iPSR. Considering that the octree depth significantly affects the reconstruction results, we propose an adaptive depth selection strategy to ensure an appropriate depth choice. To manage the oversmoothing phenomenon near the sharp features, we propose a λ\lambda-projection method, which means to project the noisy points onto the surface with an individual control coefficient λi\lambda_{i} for each point. The coefficients are determined through a Voronoi-based feature detection method. Experimental results show that our method achieves high performance in point cloud denoising and unoriented surface reconstruction within different noise scales, and exhibits well-rounded performance in various types of inputs. The source code is available at~\url{https://github.com/Submanifold/AlterUpdate}.Comment: Accepted by Computers & Graphics from CAD/Graphics 202

    Finite Element Based Tracking of Deforming Surfaces

    Full text link
    We present an approach to robustly track the geometry of an object that deforms over time from a set of input point clouds captured from a single viewpoint. The deformations we consider are caused by applying forces to known locations on the object's surface. Our method combines the use of prior information on the geometry of the object modeled by a smooth template and the use of a linear finite element method to predict the deformation. This allows the accurate reconstruction of both the observed and the unobserved sides of the object. We present tracking results for noisy low-quality point clouds acquired by either a stereo camera or a depth camera, and simulations with point clouds corrupted by different error terms. We show that our method is also applicable to large non-linear deformations.Comment: additional experiment

    PointCleanNet: Learning to Denoise and Remove Outliers from Dense Point Clouds

    Full text link
    Point clouds obtained with 3D scanners or by image-based reconstruction techniques are often corrupted with significant amount of noise and outliers. Traditional methods for point cloud denoising largely rely on local surface fitting (e.g., jets or MLS surfaces), local or non-local averaging, or on statistical assumptions about the underlying noise model. In contrast, we develop a simple data-driven method for removing outliers and reducing noise in unordered point clouds. We base our approach on a deep learning architecture adapted from PCPNet, which was recently proposed for estimating local 3D shape properties in point clouds. Our method first classifies and discards outlier samples, and then estimates correction vectors that project noisy points onto the original clean surfaces. The approach is efficient and robust to varying amounts of noise and outliers, while being able to handle large densely-sampled point clouds. In our extensive evaluation, both on synthesic and real data, we show an increased robustness to strong noise levels compared to various state-of-the-art methods, enabling accurate surface reconstruction from extremely noisy real data obtained by range scans. Finally, the simplicity and universality of our approach makes it very easy to integrate in any existing geometry processing pipeline

    Learning Signed Distance Functions from Noisy 3D Point Clouds via Noise to Noise Mapping

    Full text link
    Learning signed distance functions (SDFs) from 3D point clouds is an important task in 3D computer vision. However, without ground truth signed distances, point normals or clean point clouds, current methods still struggle from learning SDFs from noisy point clouds. To overcome this challenge, we propose to learn SDFs via a noise to noise mapping, which does not require any clean point cloud or ground truth supervision for training. Our novelty lies in the noise to noise mapping which can infer a highly accurate SDF of a single object or scene from its multiple or even single noisy point cloud observations. Our novel learning manner is supported by modern Lidar systems which capture multiple noisy observations per second. We achieve this by a novel loss which enables statistical reasoning on point clouds and maintains geometric consistency although point clouds are irregular, unordered and have no point correspondence among noisy observations. Our evaluation under the widely used benchmarks demonstrates our superiority over the state-of-the-art methods in surface reconstruction, point cloud denoising and upsampling. Our code, data, and pre-trained models are available at https://github.com/mabaorui/Noise2NoiseMapping/Comment: To appear at ICML2023. Code and data are available at https://github.com/mabaorui/Noise2NoiseMapping

    Implicit reconstructions of thin leaf surfaces from large, noisy point clouds

    Full text link
    Thin surfaces, such as the leaves of a plant, pose a significant challenge for implicit surface reconstruction techniques, which typically assume a closed, orientable surface. We show that by approximately interpolating a point cloud of the surface (augmented with off-surface points) and restricting the evaluation of the interpolant to a tight domain around the point cloud, we need only require an orientable surface for the reconstruction. We use polyharmonic smoothing splines to fit approximate interpolants to noisy data, and a partition of unity method with an octree-like strategy for choosing subdomains. This method enables us to interpolate an N-point dataset in O(N) operations. We present results for point clouds of capsicum and tomato plants, scanned with a handheld device. An important outcome of the work is that sufficiently smooth leaf surfaces are generated that are amenable for droplet spreading simulations

    Point Normal Orientation and Surface Reconstruction by Incorporating Isovalue Constraints to Poisson Equation

    Full text link
    Oriented normals are common pre-requisites for many geometric algorithms based on point clouds, such as Poisson surface reconstruction. However, it is not trivial to obtain a consistent orientation. In this work, we bridge orientation and reconstruction in implicit space and propose a novel approach to orient point clouds by incorporating isovalue constraints to the Poisson equation. Feeding a well-oriented point cloud into a reconstruction approach, the indicator function values of the sample points should be close to the isovalue. Based on this observation and the Poisson equation, we propose an optimization formulation that combines isovalue constraints with local consistency requirements for normals. We optimize normals and implicit functions simultaneously and solve for a globally consistent orientation. Owing to the sparsity of the linear system, an average laptop can be used to run our method within reasonable time. Experiments show that our method can achieve high performance in non-uniform and noisy data and manage varying sampling densities, artifacts, multiple connected components, and nested surfaces

    StarNet: Style-Aware 3D Point Cloud Generation

    Full text link
    This paper investigates an open research task of reconstructing and generating 3D point clouds. Most existing works of 3D generative models directly take the Gaussian prior as input for the decoder to generate 3D point clouds, which fail to learn disentangled latent codes, leading noisy interpolated results. Most of the GAN-based models fail to discriminate the local geometries, resulting in the point clouds generated not evenly distributed at the object surface, hence degrading the point cloud generation quality. Moreover, prevailing methods adopt computation-intensive frameworks, such as flow-based models and Markov chains, which take plenty of time and resources in the training phase. To resolve these limitations, this paper proposes a unified style-aware network architecture combining both point-wise distance loss and adversarial loss, StarNet which is able to reconstruct and generate high-fidelity and even 3D point clouds using a mapping network that can effectively disentangle the Gaussian prior from input's high-level attributes in the mapped latent space to generate realistic interpolated objects. Experimental results demonstrate that our framework achieves comparable state-of-the-art performance on various metrics in the point cloud reconstruction and generation tasks, but is more lightweight in model size, requires much fewer parameters and less time for model training
    • …
    corecore