57,719 research outputs found

    Novel Image Mosaic Algorithm for Concrete Pavement Surface Image Reconstruction

    Get PDF
    AbstractIn this paper, a novel image mosaic method for concrete pavement surface image sequences reconstruction has been proposed. Harris corner points are extracted uniformly from the overlapped areas of concrete pavement surface images, which are considered feature points. The commonly used circular projection method is applied for coarse matching step and an improved point matching method is proposed for invariance of image rotation and distortion. The image fusion strategy of fading in and fading out is employed for the smooth and seamless of mosaic image. For the practical pavement surface images, which exists rotation and distortion, the corresponding experimental results show that the proposed image matching method has higher precision and stronger robustness

    Recovering refined surface normals for relighting clothing in dynamic scenes

    Get PDF
    In this paper we present a method to relight captured 3D video sequences of non-rigid, dynamic scenes, such as clothing of real actors, reconstructed from multiple view video. A view-dependent approach is introduced to refine an initial coarse surface reconstruction using shape-from-shading to estimate detailed surface normals. The prior surface approximation is used to constrain the simultaneous estimation of surface normals and scene illumination, under the assumption of Lambertian surface reflectance. This approach enables detailed surface normals of a moving non-rigid object to be estimated from a single image frame. Refined normal estimates from multiple views are integrated into a single surface normal map. This approach allows highly non-rigid surfaces, such as creases in clothing, to be relit whilst preserving the detailed dynamics observed in video

    Meshed Up: Learnt Error Correction in 3D Reconstructions

    Full text link
    Dense reconstructions often contain errors that prior work has so far minimised using high quality sensors and regularising the output. Nevertheless, errors still persist. This paper proposes a machine learning technique to identify errors in three dimensional (3D) meshes. Beyond simply identifying errors, our method quantifies both the magnitude and the direction of depth estimate errors when viewing the scene. This enables us to improve the reconstruction accuracy. We train a suitably deep network architecture with two 3D meshes: a high-quality laser reconstruction, and a lower quality stereo image reconstruction. The network predicts the amount of error in the lower quality reconstruction with respect to the high-quality one, having only view the former through its input. We evaluate our approach by correcting two-dimensional (2D) inverse-depth images extracted from the 3D model, and show that our method improves the quality of these depth reconstructions by up to a relative 10% RMSE.Comment: Accepted for the International Conference on Robotics and Automation (ICRA) 201

    CVRecon: Rethinking 3D Geometric Feature Learning For Neural Reconstruction

    Full text link
    Recent advances in neural reconstruction using posed image sequences have made remarkable progress. However, due to the lack of depth information, existing volumetric-based techniques simply duplicate 2D image features of the object surface along the entire camera ray. We contend this duplication introduces noise in empty and occluded spaces, posing challenges for producing high-quality 3D geometry. Drawing inspiration from traditional multi-view stereo methods, we propose an end-to-end 3D neural reconstruction framework CVRecon, designed to exploit the rich geometric embedding in the cost volumes to facilitate 3D geometric feature learning. Furthermore, we present Ray-contextual Compensated Cost Volume (RCCV), a novel 3D geometric feature representation that encodes view-dependent information with improved integrity and robustness. Through comprehensive experiments, we demonstrate that our approach significantly improves the reconstruction quality in various metrics and recovers clear fine details of the 3D geometries. Our extensive ablation studies provide insights into the development of effective 3D geometric feature learning schemes. Project page: https://cvrecon.ziyue.cool

    A bayesian approach to simultaneously recover camera pose and non-rigid shape from monocular images

    Get PDF
    © . This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/In this paper we bring the tools of the Simultaneous Localization and Map Building (SLAM) problem from a rigid to a deformable domain and use them to simultaneously recover the 3D shape of non-rigid surfaces and the sequence of poses of a moving camera. Under the assumption that the surface shape may be represented as a weighted sum of deformation modes, we show that the problem of estimating the modal weights along with the camera poses, can be probabilistically formulated as a maximum a posteriori estimate and solved using an iterative least squares optimization. In addition, the probabilistic formulation we propose is very general and allows introducing different constraints without requiring any extra complexity. As a proof of concept, we show that local inextensibility constraints that prevent the surface from stretching can be easily integrated. An extensive evaluation on synthetic and real data, demonstrates that our method has several advantages over current non-rigid shape from motion approaches. In particular, we show that our solution is robust to large amounts of noise and outliers and that it does not need to track points over the whole sequence nor to use an initialization close from the ground truth.Peer ReviewedPostprint (author's final draft
    • …
    corecore